scholarly journals CaDHN4, a Salt and Cold Stress-Responsive Dehydrin Gene from Pepper Decreases Abscisic Acid Sensitivity in Arabidopsis

2019 ◽  
Vol 21 (1) ◽  
pp. 26
Author(s):  
Hua-feng Zhang ◽  
Su-ya Liu ◽  
Ji-hui Ma ◽  
Xin-ke Wang ◽  
Saeed ul Haq ◽  
...  

Dehydrins play an important role in improving plant resistance to abiotic stresses. In this study, we isolated a dehydrin gene from pepper (Capsicum annuum L.) leaves, designated as CaDHN4. Sub-cellular localization of CaDHN4 was to be found in the nucleus and membrane. To authenticate the function of CaDHN4 in cold- and salt-stress responses and abscisic acid (ABA) sensitivity, we reduced the CaDHN4 expression using virus-induced gene silencing (VIGS), and overexpressed the CaDHN4 in Arabidopsis. We found that silencing of CaDHN4 reduced the growth of pepper seedlings and CaDHN4-silenced plants exhibited more serious wilting, higher electrolyte leakage, and more accumulation of ROS in the leaves compared to pTRV2:00 plants after cold stress, and lower chlorophyll contents and higher electrolyte leakage compared to pTRV2:00 plants under salt stress. However, CaDHN4-overexpressing Arabidopsis plants had higher seed germination rates and post-germination primary root growth, compared to WT plants under salt stress. In response to cold and salt stresses, the CaDHN4-overexpressed Arabidopsis exhibited lower MDA content, and lower relative electrolyte leakage compared to the WT plants. Under ABA treatments, the fresh weight and germination rates of transgenic plants were higher than WT plants. The transgenic Arabidopsis expressing a CaDHN4 promoter displayed a more intense GUS staining than the normal growth conditions under treatment with hormones including ABA, methyl jasmonate (MeJA), and salicylic acid (SA). Our results suggest that CaDHN4 can protect against cold and salt stresses and decrease ABA sensitivity in Arabidopsis.

2006 ◽  
Vol 26 (18) ◽  
pp. 6902-6912 ◽  
Author(s):  
Zhizhong Chen ◽  
Hairong Zhang ◽  
Daniel Jablonowski ◽  
Xiaofeng Zhou ◽  
Xiaozhi Ren ◽  
...  

ABSTRACT The phytohormone abscisic acid (ABA) plays an important role in modulating plant growth, development, and stress responses. In a genetic screen for mutants with altered drought stress responses, we identified an ABA-overly sensitive mutant, the abo1 mutant, which showed a drought-resistant phenotype. The abo1 mutation enhances ABA-induced stomatal closing and increases ABA sensitivity in inhibiting seedling growth. abo1 mutants are more resistant to oxidative stress than the wild type and show reduced levels of transcripts of several stress- or ABA-responsive genes. Interestingly, the mutation also differentially modulates the development and growth of adjacent guard cells. Map-based cloning identified ABO1 as a new allele of ELO2, which encodes a homolog of Saccharomyces cerevisiae Iki3/Elp1/Tot1 and human IκB kinase-associated protein. Iki3/Elp1/Tot1 is the largest subunit of Elongator, a multifunctional complex with roles in transcription elongation, secretion, and tRNA modification. Ecotopic expression of plant ABO1/ELO2 in a tot1/elp1Δ yeast Elongator mutant complements resistance to zymocin, a yeast killer toxin complex, indicating that ABO1/ELO2 substitutes for the toxin-relevant function of yeast Elongator subunit Tot1/Elp1. Our results uncover crucial roles for ABO1/ELO2 in modulating ABA and drought responses in Arabidopsis thaliana.


2021 ◽  
Author(s):  
Li Qing ◽  
Tian Qianqian ◽  
Zhang Yue ◽  
Niu Mengxue ◽  
Yu Xiaoqian ◽  
...  

Abstract Abscisic acid (ABA) is a key plant hormone that regulates plant growth development and stress response. ABA is recognized and bound by ABA Receptor PYR/PYL/RCAR (referred to as PYLs). However, little is known about the PYLs gene family in Populus euphratica. Here, we identified 12 PYLs in P. euphratica and named PePYL1-12. Phylogenetic analysis divided the 12 PePYLs into three subfamilies. Subcellular localization showed that PePYL2, PePYL4, PePYL5, PePYL6, and PePYL9 were located in the cytoplasm and nucleus, PePYL10 localized in the nucleus. The promoter of 12 PePYLs contains hormones- and abiotic stress-related cis-acting elements. Moreover, ABA and drought significantly up-regulation the expression of PePYL6 and PePYL9. To study the performance of PePYLs under ABA and drought stress, we generated transgenic Arabidopsis plants overexpressing PePYL6 and PePYL9. Compared with wild type, transgenic Arabidopsis enhanced ABA sensitivity during seed germination and root growth, improved water use efficiency and drought resistance. Taken together, our results confirmed that PePYL6 and PePYL9 play a positive role in ABA-mediated stress responses in P. euphratica.


2017 ◽  
Vol 142 (3) ◽  
pp. 209-216 ◽  
Author(s):  
Ruigang Wu ◽  
Yi Wang ◽  
Ting Wu ◽  
Xuefeng Xu ◽  
Zhenhai Han

MYB (v-myb avian myeloblastosis viral oncogene homologs) transcription factors (TFs) are involved in diverse physiological processes, including cell shape determination, cell differentiation, and secondary metabolism, as well as abiotic stress response. In the present study, MdMYB4, an R2R3-MYB protein that is a homolog of Arabidopsis thaliana MYB4, was identified and characterized. Quantitative real-time polymerase chain reaction (qRT-PCR) expression analysis demonstrated that MdMYB4 is extensively expressed in various apple (Malus domestica) tissues and that its expression is induced by cold, osmotic, and salt stress. An MdMYB4-GFP fusion protein was localized in the nucleus of transformed onion (Allium cepa) epidermal cells and had a certain transcriptional activation activity by yeast one-hybrid assay. Overexpression of the MdMYB4 gene remarkably enhanced the tolerance of stably transgenic apple calli to severe salt and cold stress, and both the relative conductivity and malondialdehyde (MDA) accumulation of transgenic calli under salt and cold stress were significantly lower than in the wild type control. Taken together, these results suggest that MdMYB4 may play a positive regulatory role in both cold and salt stress responses.


2021 ◽  
Author(s):  
Gajendra Singh Jeena ◽  
Ujjal Jyoti Phukan ◽  
Neeti Singh ◽  
Ashutosh Joshi ◽  
Alok Pandey ◽  
...  

ABSCISIC ACID REPRESSOR-1 (ABR1), an APETALA2 (AP2) domain containing transcription factor (TF) contribute important function against variety of external cues. Here, we report an AP2/ERF TF, AtERF60 that serves as an important regulator of ABR1 gene. AtERF60 is induced in response to drought, salt, abscisic acid (ABA), salicylic acid (SA), and bacterial pathogen PstDC3000 infection. AtERF60 interacts with DEHYDRATION RESPONSE ELEMENTS (DRE1/2) and GCC box indicating its ability to regulate multiple responses. Overexpression of AtERF60 results in the drought and salt stress tolerant phenotype in both seedling and mature Arabidopsis plants in comparison with the wild type (WT-Col). However, mutation in AtERF60 showed hyperactive response against drought and salt stress in comparison with its overexpression and WT. Microarray and qRT-PCR analysis of overexpression and mutant lines indicated that AtERF60 regulates both abiotic and biotic stress inducible genes. One of the differentially expressing transcripts was ABR1 and we found that AtERF60 interacts with the DRE cis-elements present in the ABR1 promoter. The mutation in AtERF60 showed ABA hypersensitive response, increased ABA content, and reduced susceptibility to PstDC3000. Altogether, we conclude that AtERF60 represses ABR1 transcript by binding with the DRE cis-elements and modulates both abiotic and biotic stress responses in Arabidopsis.


2020 ◽  
Vol 11 ◽  
Author(s):  
Anna Fiorillo ◽  
Maurizio Mattei ◽  
Patrizia Aducci ◽  
Sabina Visconti ◽  
Lorenzo Camoni

2006 ◽  
Vol 142 (3) ◽  
pp. 1113-1126 ◽  
Author(s):  
Abel Rosado ◽  
Arnaldo L. Schapire ◽  
Ray A. Bressan ◽  
Antoine L. Harfouche ◽  
Paul M. Hasegawa ◽  
...  

2021 ◽  
Vol 22 (19) ◽  
pp. 10892
Author(s):  
Yingying Huang ◽  
Jiahao Zhou ◽  
Yuxiang Li ◽  
Ruidang Quan ◽  
Juan Wang ◽  
...  

The primary root is the basic component of the root system and plays a key role in early seedling growth in rice. Its growth is easily affected by environmental cues, such as salt stress. Abscisic acid (ABA) plays an essential role in root development, but the molecular mechanism underlying ABA-regulated root growth in response to salt stress remains poorly understood. In this study, we report that salt stress inhibits primary root elongation and promotes primary root swelling. Moreover, salt stress induces the expression of ABA-responsive genes and ABA accumulation in the primary root, revealing that ABA plays an essential role in salt-modulated root growth. Transgenic lines of OsSAPK10-OE and OsABIL2-OE, which constitutively express OsSAPK10 or OsABIL2, with enhanced or attenuated ABA signaling, show increased and decreased sensitivity to salt, correspondingly. Microscopic analysis indicates that salt and ABA inhibits cell proliferation and promotes cell expansion in the root apical meristem. Transcriptome analysis showed that ABA induces the expression of EXPANSIN genes. Further investigations indicate that ABA exerts these effects largely through ABA signaling. Thus, our findings deepen our understanding of the role of ABA in controlling primary root growth in response to salt stress, and this knowledge can be used by breeders to cultivate rice varieties suitable for saline–alkali land.


2021 ◽  
Author(s):  
Kieu-Nga Tran ◽  
Pramod Pantha ◽  
Guannan Wang ◽  
Narender Kumar ◽  
Chathura Wijesinghege ◽  
...  

The use of extremophyte models to select growth promoting traits during environmental stresses is a recognized yet an underutilized strategy to design stress-resilient plants. Schrenkiella parvula, a leading extremophyte model in Brassicaceae, can grow and complete its life cycle under multiple environmental stresses, including high salinity. While S. parvula is equipped with foundational genomic resources to identify genetic clues that potentially lead to stress adaptations at the phenome level, a comprehensive physiological and structural characterization of salt stress responses throughout its lifecycle is absent. We aimed to identify the influential traits that lead to resilient growth and strategic decisions to ensure survival of the species in an extreme environment, and examined salt-induced changes in the physiology and anatomy of S. parvula throughout its life cycle across multiple tissues. We found that S. parvula maintains or even enhances growth during various developmental stages at salt stress levels known to inhibit growth in Arabidopsis thaliana and most crops. The resilient growth of S. parvula was associated with key traits synergistically allowing continued primary root growth, expansion of xylem vessel elements across the root-shoot continuum, and the high capacity to maintain tissue water levels by developing larger and thicker leaves while facilitating continued photosynthesis during salt stress. In turn, the stress-resilient growth during the vegetative phase of S. parvula allowed a successful transition to a reproductive phase via early flowering followed by the development of larger siliques with viable seeds on salt-treated plants. Additionally, the success of self-fertilization in early flowering stages was dependent on salt-induced filament elongation. Our results suggest that the maintenance of leaf water status and enhancement of selfing in early flowers to ensure reproductive success are among the most influential traits that contribute to the extremophilic lifestyle of S. parvula in its natural habitat.


2021 ◽  
Vol 22 (14) ◽  
pp. 7313
Author(s):  
Youcheng Zhu ◽  
Qingyu Wang ◽  
Ziwei Gao ◽  
Ying Wang ◽  
Yajing Liu ◽  
...  

Salt stress seriously restricts crop yield and quality, leading to an urgent need to understand its effects on plants and the mechanism of plant responses. Although phytohormones are crucial for plant responses to salt stress, the role of phytohormone signal transduction in the salt stress responses of stress-resistant species such as Sophora alopecuroides has not been reported. Herein, we combined transcriptome and metabolome analyses to evaluate expression changes of key genes and metabolites associated with plant hormone signal transduction in S. alopecuroides roots under salt stress for 0 h to 72 h. Auxin, cytokinin, brassinosteroid, and gibberellin signals were predominantly involved in regulating S. alopecuroides growth and recovery under salt stress. Ethylene and jasmonic acid signals may negatively regulate the response of S. alopecuroides to salt stress. Abscisic acid and salicylic acid are significantly upregulated under salt stress, and their signals may positively regulate the plant response to salt stress. Additionally, salicylic acid (SA) might regulate the balance between plant growth and resistance by preventing reduction in growth-promoting hormones and maintaining high levels of abscisic acid (ABA). This study provides insight into the mechanism of salt stress response in S. alopecuroides and the corresponding role of plant hormones, which is beneficial for crop resistance breeding.


Sign in / Sign up

Export Citation Format

Share Document