scholarly journals O-GlcNAc-Modification of NSL3 at Thr755 Site Maintains the Holoenzyme Activity of MOF/NSL Histone Acetyltransferase Complex

2019 ◽  
Vol 21 (1) ◽  
pp. 173
Author(s):  
Linhong Zhao ◽  
Min Li ◽  
Tao Wei ◽  
Chang Feng ◽  
Tingting Wu ◽  
...  

Both OGT1 (O-linked β-N-acetylglucosamine (O-GlcNAc) transferase isoform 1) and NSL3 (nonspecific lethal protein 3) are crucial components of the MOF (males absent on the first)/NSL histone acetyltransferase complex. We previously described how global histone H4 acetylation levels were modulated by OGT1/O-GlcNAcylation-mediated NSL3 stability. However, the specific modification site of NSL3 and its molecular mechanism of protein stability remain unknown. Here, we present evidence from biochemical experiments arguing that O-GlcNAcylation of NSL3 at Thr755 is tightly associated with holoenzyme activity of the MOF/NSL complex. Using in vitro O-GlcNAc-transferase assays combined with mass spectrometry, we suppose that the residue Thr755 on NSL3 C-terminus is the major site O-GlcNAc-modified by OGT1. Importantly, O-GlcNAcylation of this site is involved in the regulation of the ubiquitin-degradation of NSL3, because this site mutation (T755A) promotes the ubiquitin-mediated degradation of NSL3. Further in-depth research found that ubiquitin conjugating enzyme E2 S (UBE2S) accelerated the degradation of NSL3 via direct binding to it. Interestingly, OGT1 and UBE2S competitively bind to NSL3, suggesting the coordination of OGT1–UBE2S in regulating NSL3 stability. Furthermore, O-GlcNAcylation of NSL3 Thr755 site regulates the histone H4 acetylation levels at lysine 5, 8, and 16, suggesting that the O-GlcNAcylation of NSL3 at Thr755 is required for maintaining the integrity and holoenzyme activity of the MOF/NSL complex. In colony formation assays, we found that the integrity of the complex impacts the proliferation of the lung carcinoma type II epithelium-like A549 cells. Taken together, our results provide new insight into the elucidation of the molecular mechanism of the MOF/NSL complex.

1999 ◽  
Vol 19 (1) ◽  
pp. 855-863 ◽  
Author(s):  
Keiko Ikeda ◽  
David J. Steger ◽  
Anton Eberharter ◽  
Jerry L. Workman

ABSTRACT Recent progress in identifying the catalytic subunits of histone acetyltransferase (HAT) complexes has implicated histone acetylation in the regulation of transcription. Here, we have analyzed the function of two native yeast HAT complexes, SAGA (Spt-Ada-Gcn5 Acetyltransferase) and NuA4 (nucleosome acetyltransferase of H4), in activating transcription from preassembled nucleosomal array templates in vitro. Each complex was tested for the ability to enhance transcription driven by GAL4 derivatives containing either acidic, glutamine-rich, or proline-rich activation domains. On nucleosomal array templates, the SAGA complex selectively stimulates transcription driven by the VP16 acidic activation domain in an acetyl coenzyme A-dependent manner. In contrast, the NuA4 complex facilitates transcription mediated by any of the activation domains tested if allowed to preacetylate the nucleosomal template, indicating a general stimulatory effect of histone H4 acetylation. However, when the extent of acetylation by NuA4 is limited, the complex also preferentially stimulates VP16-driven transcription. SAGA and NuA4 interact directly with the VP16 activation domain but not with a glutamine-rich or proline-rich activation domain. These data suggest that recruitment of the SAGA and NuA4 HAT complexes by the VP16 activation domain contributes to HAT-dependent activation. In addition, extensive H4/H2B acetylation by NuA4 leads to a general activation of transcription, which is independent of activator-NuA4 interactions.


2005 ◽  
Vol 25 (21) ◽  
pp. 9175-9188 ◽  
Author(s):  
Edwin R. Smith ◽  
Christelle Cayrou ◽  
Rong Huang ◽  
William S. Lane ◽  
Jacques Côté ◽  
...  

ABSTRACT We describe a stable, multisubunit human histone acetyltransferase complex (hMSL) that contains homologs of the Drosophila dosage compensation proteins MOF, MSL1, MSL2, and MSL3. This complex shows strong specificity for histone H4 lysine 16 in chromatin in vitro, and RNA interference-mediated knockdown experiments reveal that it is responsible for the majority of H4 acetylation at lysine 16 in the cell. We also find that hMOF is a component of additional complexes, forming associations with host cell factor 1 and a protein distantly related to MSL1 (hMSL1v1). We find two versions of hMSL3 in the hMSL complex that differ by the presence of the chromodomain. Lastly, we find that reduction in the levels of hMSLs and acetylation of H4 at lysine 16 are correlated with reduced transcription of some genes and with a G2/M cell cycle arrest. This is of particular interest given the recent correlation of global loss of acetylation of lysine 16 in histone H4 with tumorigenesis.


2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii19-ii19
Author(s):  
Anca Mihalas ◽  
Heather Feldman ◽  
Anoop Patel ◽  
Patrick Paddison

Abstract Current standard of care therapy for glioblastoma (GBM) includes cytoreduction followed by ablative therapies that target rapidly dividing cell types. However, the presence of quiescent-like/G0 states, therefore, represents a natural reservoir of tumor cells that are resistant to current treatments. Quiescence or G0 phase is a reversible state of “stasis” cells enter in response to developmental or environmental cues. To gain insight into how glioblastoma cells might regulate G0-like states, we performed a genome-wide CRISPR-Cas9 screen in patient-derived GBM stem-like cells (GSCs) harboring a G0-reporter to identify genes that when inhibited trap GSCs in G0-like states. Among the top screen hits were members of the Tip60/KAT5 histone acetyltransferase complex, which targets both histones (e.g., H4) and non-histone proteins for acetylation. NuA4 functions as a transcriptional activator, whose activities are coordinated with MYC in certain contexts, and also participates in DNA double-strand break repair by facilitating chromatin opening. However, currently little is known about the roles for NuA4 complex in GBM biology. Through modeling KAT5 function in GSC in vitro cultures and in vivo tumors, we find that KAT5 inhibition causes cells to arrest in a G0-like state with high p27 levels, G1-phase DNA content, low protein synthesis rates, low rRNA rates, lower metabolic rate, suppression of cell cycle gene expression, and low histone H4 acetylation. Interestingly, partial inhibition of KAT5 activity slows highly aggressive tumor growth, while increasing p27hi H4-aclow populations. Remarkably, we that low grade gliomas have significantly higher H4-aclow subpopulations and generally lower H4-ac levels than aggressive grade IV tumors. Taken together, our results suggest that NuA4/KAT5 activity may play a key role in quiescence ingress/egress in glioma and that targeting its activity in high grade tumors may effectively “down grade” them, thus, increase patient survival.


2011 ◽  
Vol 18 (5) ◽  
pp. 243-252 ◽  
Author(s):  
Federica Franciosi ◽  
Valentina Lodde ◽  
Ghylène Goudet ◽  
Guy Duchamp ◽  
Stefan Deleuze ◽  
...  

2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Yao Liang ◽  
Yuanyuan Su ◽  
Chenzhong Xu ◽  
Na Zhang ◽  
Doudou Liu ◽  
...  

Abstract The histone acetyltransferase (HAT) KAT7/HBO1/MYST2 plays a crucial role in the pre-replication complex (pre-RC) formation, DNA replication and cell proliferation via acetylation of histone H4 and H3. In a search for protein kinase D1 (PKD1)-interacting proteins, we have identified KAT7 as a potential PKD1 substrate. We show that PKD1 directly interacts and phosphorylates KAT7 at Thr97 and Thr331 in vitro and in vivo. PKD1-mediated phosphorylation of KAT7 enhances its expression levels and stability by reducing its ubiquitination-mediated degradation. Significantly, the phospho-defective mutant KAT7-Thr97/331A attenuates histone H4 acetylation levels, MCM2/6 loading on the chromatin, DNA replication and cell proliferation. Similarly, PKD1 knockdown decreases, whereas the constitutive active mutant PKD1-CA increases histone H4 acetylation levels and MCM2/6 loading on the chromatin. Overall, these results suggest that PKD1-mediated phosphorylation of KAT7 may be required for pre-RC formation and DNA replication.


2021 ◽  
Author(s):  
Chunxiao Wu ◽  
Qiquan Yu ◽  
Weizhen Shou ◽  
Kun Zhang ◽  
Yang Li ◽  
...  

Background: Jin Ning Fang (JNF) is widely used as an adjuvant therapy for lung cancer. However, its molecular mechanism against lung cancer is still unclear. Methods: The chemical compounds JNF were screened from the TCMSP database and its target proteins were then predicted. The genes related to lung cancer were collected from the CTD and DisGeNET databases. Next, targets were integrated with disease-related genes to obtain candidate genes. Functional enrichment and protein-protein interaction (PPI) analysis were also performed, followed by construction of pharmacological network. Meanwhile, Autodock was used to assess the affinity between targets and compound. Finally, the anti-cancer effect of JNF on lung cancer cells was detected and some predicted key genes was validated by using real-time PCR. Results: Twenty-five overlapping targets were obtained, and pathway analysis showed that JNF might exert its anti-cancer function by regulating some biological pathways, such as apoptosis pathway. PPI and pharmacological network revealed several core targets (such as AKT1, AR, and ESR1) and three compounds (quercetin, calcium carbonate, and beta-sitosterol). Then, beta-sitosterol had a high affinity with AKT1, AR, and ESR1. Further in vitro experiments confirmed that JNF could inhibit proliferation and promote apoptosis of A549 cells. The expression of FDPS, PIM1, VCAM1, SLC29A1, NQO1, and ESR1 were significantly decreased, while mRNA level of AR and ANPEP were markedly increased after JNF treatment. Conclusion: JNF may exert anti-lung cancer effect through multiple targets and pathways, and identified genes may be used as potential biomarkers for diagnosis and treatment of lung cancer.


Reproduction ◽  
2020 ◽  
Vol 159 (1) ◽  
pp. 1-13 ◽  
Author(s):  
Wei Cui ◽  
Agnes Cheong ◽  
Yongsheng Wang ◽  
Yuran Tsuchida ◽  
Yong Liu ◽  
...  

Microspherule protein 1 (MCRS1, also known as MSP58) is an evolutionarily conserved protein that has been implicated in various biological processes. Although a variety of functions have been attributed to MCRS1 in vitro, mammalian MCRS1 has not been studied in vivo. Here we report that MCRS1 is essential during early murine development. Mcrs1 mutant embryos exhibit normal morphology at the blastocyst stage but cannot be recovered at gastrulation, suggesting an implantation failure. Outgrowth (OG) assays reveal that mutant blastocysts do not form a typical inner cell mass (ICM) colony, the source of embryonic stem cells (ESCs). Surprisingly, cell death and histone H4 acetylation analysis reveal that apoptosis and global H4 acetylation are normal in mutant blastocysts. However, analysis of lineage specification reveals that while the trophoblast and primitive endoderm are properly specified, the epiblast lineage is compromised and exhibits a severe reduction in cell number. In summary, our study demonstrates the indispensable role of MCRS1 in epiblast development during early mammalian embryogenesis.


2008 ◽  
Vol 41 (5) ◽  
pp. 389-392 ◽  
Author(s):  
Aspasia-Athina Volakaki ◽  
Daniel Lafkas ◽  
Eva Kassi ◽  
Andrew V Schally ◽  
Athanasios G Papavassiliou ◽  
...  

GHRH, besides its neuroendocrine action in controlling the release of GH from the pituitary, stimulates the growth of various cancers in vivo and in vitro by direct mechanism(s). However, the molecular mechanism that mediates these proliferative effects of GHRH in extrapituitary tissues remains poorly characterized. In the present study, we investigated whether the tumor suppressor p21/waf1 is involved in the mediation of the proliferative effects of GHRH in A549 human lung cancer epithelial cells. Exposure of A549 cells to the GHRH antagonist JMR-132 caused a significant inhibition in the rate of cell proliferation. In A549 cells, GHRH suppressed while JMR-132 increased the levels of p21 expression in a dose-dependent manner. This suggests that GHRH could regulate p21 levels. We then evaluated whether p21 is required in A549 cells for the regulation of cell proliferation by GHRH. To this end, we knocked-down p21 expression in A549 cells by siRNA and assessed the effects of antagonist JMR-132 on cell proliferation. We found that the loss of p21 expression abolished the anti-proliferative effects of JMR-132. Suppression of p21 expression by siRNA in human HT29 colon cancer cells and non-transformed mouse osteoblasts KS483 also blocked the anti-proliferative effects of JMR-132 suggesting that the regulation of cell proliferation by GHRH is p21 dependent. These results shed light on the molecular mechanism of action of GHRH antagonists in tumor tissues and suggest that the antineoplastic activity of GHRH antagonists could be considered for the treatment of cancers expressing p21.


2008 ◽  
Vol 28 (8) ◽  
pp. 2690-2700 ◽  
Author(s):  
Sudhakar Jha ◽  
Etsuko Shibata ◽  
Anindya Dutta

ABSTRACT The role of chromatin-remodeling factors in transcription is well established, but the link between chromatin-remodeling complexes and DNA repair remains unexplored. Human Rvb1 and Rvb2 are highly conserved AAA+ ATP binding proteins that are part of various chromatin-remodeling complexes, such as Ino80, SNF2-related CBP activator protein (SRCAP), and Tip60/NuA4 complexes, but their molecular function is unclear. The depletion of Rvb1 increases the amount and persistence of phosphorylation on chromatin-associated H2AX after the exposure of cells to UV irradiation or to mitomycin C, cisplatin, camptothecin, or etoposide, without increasing the amount of DNA damage. Tip60 depletion, but not Ino80 or SRCAP depletion, mimics the effect of Rvb1 depletion on H2AX phosphorylation. Rvb1 is required for the histone acetyltransferase (HAT) activity of the Tip60 complex, and histone H4 acetylation is required prior to the dephosphorylation of phospho-H2AX. Thus, Rvb1 is critical for the dephosphorylation of phospho-H2AX due to the role of Rvb1 in maintaining the HAT activity of Tip60/NuA4, implicating the Rvb1-Tip60 complex in the chromatin-remodeling response of cells after DNA damage.


2009 ◽  
Vol 29 (20) ◽  
pp. 5455-5464 ◽  
Author(s):  
Kira Glover-Cutter ◽  
Stéphane Larochelle ◽  
Benjamin Erickson ◽  
Chao Zhang ◽  
Kevan Shokat ◽  
...  

ABSTRACT The function of human TFIIH-associated Cdk7 in RNA polymerase II (Pol II) transcription and C-terminal domain (CTD) phosphorylation was investigated in analogue-sensitive Cdk7 as/as mutant cells where the kinase can be inhibited without disrupting TFIIH. We show that both Cdk7 and Cdk9/PTEFb contribute to phosphorylation of Pol II CTD Ser5 residues on transcribed genes. Cdk7 is also a major kinase of CTD Ser7 on Pol II at the c-fos and U snRNA genes. Furthermore, TFIIH and recombinant Cdk7-CycH-Mat1 as well as recombinant Cdk9-CycT1 phosphorylated CTD Ser7 and Ser5 residues in vitro. Inhibition of Cdk7 in vivo suppressed the amount of Pol II accumulated at 5′ ends on several genes including c-myc, p21, and glyceraldehyde-3-phosphate dehydrogenase genes, indicating reduced promoter-proximal pausing or polymerase “leaking” into the gene. Consistent with a 5′ pausing defect, Cdk7 inhibition reduced recruitment of the negative elongation factor NELF at start sites. A role of Cdk7 in regulating elongation is further suggested by enhanced histone H4 acetylation and diminished histone H4 trimethylation on lysine 36—two marks of elongation—within genes when the kinase was inhibited. Consistent with a new role for TFIIH at 3′ ends, it was detected within genes and 3′-flanking regions, and Cdk7 inhibition delayed pausing and transcription termination.


Sign in / Sign up

Export Citation Format

Share Document