scholarly journals Oestrogenic Endocrine Disruptors in the Placenta and the Fetus

2020 ◽  
Vol 21 (4) ◽  
pp. 1519 ◽  
Author(s):  
Zi-Run Tang ◽  
Xue-Ling Xu ◽  
Shou-Long Deng ◽  
Zheng-Xing Lian ◽  
Kun Yu

Endocrine disrupting chemicals (EDCs) are exogenous substances that interfere with the stability and regulation of the endocrine system of the body or its offspring. These substances are generally stable in chemical properties, not easy to be biodegraded, and can be enriched in organisms. In the past half century, EDCs have gradually entered the food chain, and these substances have been frequently found in maternal blood. Perinatal maternal hormone levels are unstable and vulnerable to EDCs. Some EDCs can affect embryonic development through the blood-fetal barrier and cause damage to the neuroendocrine system, liver function, and genital development. Some also effect cross-generational inheritance through epigenetic mechanisms. This article mainly elaborates the mechanism and detection methods of estrogenic endocrine disruptors, such as bisphenol A (BPA), organochlorine pesticides (OCPs), diethylstilbestrol (DES) and phthalates (PAEs), and their effects on placenta and fetal health in order to raise concerns about the proper use of products containing EDCs during pregnancy and provide a reference for human health.

2019 ◽  
Vol 34 (4) ◽  
pp. 309-325 ◽  
Author(s):  
Chinonye Doris Onuzulu ◽  
Oluwakemi Anuoluwapo Rotimi ◽  
Solomon Oladapo Rotimi

Abstract Endocrine disrupting chemicals (EDCs) are xenobiotics which adversely modify the hormone system. The endocrine system is most vulnerable to assaults by endocrine disruptors during the prenatal and early development window, and effects may persist into adulthood and across generations. The prenatal stage is a period of vulnerability to environmental chemicals because the epigenome is usually reprogrammed during this period. Bisphenol A (BPA), lead (Pb), and dichlorodiphenyltrichloroethane (DDT) were chosen for critical review because they have become serious public health concerns globally, especially in Africa where they are widely used without any regulation. In this review, we introduce EDCs and describe the various modes of action of EDCs and the importance of the prenatal and developmental windows to EDC exposure. We give a brief overview of epigenetics and describe the various epigenetic mechanisms: DNA methylation, histone modifications and non-coding RNAs, and how each of them affects gene expression. We then summarize findings from previous studies on the effects of prenatal exposure to the endocrine disruptors BPA, Pb and DDT on each of the previously described epigenetic mechanisms. We also discuss how the epigenetic alterations caused by these EDCs may be related to disease processes.


2018 ◽  
Vol 97 (3) ◽  
pp. 197-203
Author(s):  
Oksana O. Sinitsyna ◽  
Yu. A. Rakhmanin ◽  
Z. I. Zholdakova ◽  
M. G. Aksenova ◽  
A. V. Kirillov ◽  
...  

The literature review has shown the problem of endocrine disrupting chemicals (EDC) to be associated with their wide distribution in the environment, the abundance, and variety of the chemical structure. Three leading mechanisms of EDCs action are identified as follows: imitation of the naturally occurring hormones action, blocking of receptors within the target cells of hormones, the impact of their kinetics in the body. Epidemiological studies indicate an increase in diseases caused by a disorder of the hormonal system. They are associated with the effect of EDCs. Substances that are completely dissimilar in chemical structure can cause the same effects. According to WHO [6], it is impossible, based on the chemical structure, to determine whether a substance is a disruptor of the endocrine system. However, some structural features determine the estrogenic, thyreogenic and glucocorticoid activity of chemicals. Hence, the need to differentiate the specific (primary) effect of a chemical substance on the endocrine system and the indirect (secondary) effect on it via other mechanisms comes to the fore. In own research, specific mechanisms were shown to be determined in the experiment when studying the complexity of effects, taking into account the processes of adaptation and decompensation, and identifying the effects manifested with the lowest doses. One of the methodological approaches can be the developed “structure-biotransformation-activity” prediction system aimed at revealing the primary types of effects: using quantum-chemical calculations and the plausible reasoning class (called the JSM-reasoning in honour of John Stuart Mill) logico-combinatorial method, it was possible to identify structural fragments of substances responsible for the manifestation of carcinogenic, allergenic effects, methemoglobin formation, etc. The results of clinical studies show the use of pharmacological drugs as models for in vivo study of the effects of EDC to allow not only studying atypical mechanisms of the impact of EDCs from the point of view of molecular genetics but also to predict the individual susceptibility to them taking into account polymorphism of candidate genes. The EDCs problem poses the need for a complex of interdisciplinary research, including three main relationships: exposure assessment-biomonitoring data-the prevalence of endocrine-dependent diseases, taking into account the qualitative and quantitative contribution of individual endocrine disrupters to the development of an ecologically dependent endocrine pathology using molecular genetic methods.


2020 ◽  
Vol 20 (5) ◽  
pp. 633-645 ◽  
Author(s):  
Hina Rashid ◽  
Saad S. Alqahtani ◽  
Saeed Alshahrani

Background: Food is indispensable for human life and determines the health and wellbeing of the consumer. As food is the source of energy for humans, it also emerges as one of the most important sources of exposure to deleterious chemicals both natural and synthetic. The food exposed chemicals cause a number of detrimental health effects in humans, with endocrine disruption being of serious concern amongst these effects. Such chemicals disrupting the health of endocrine system are known as endocrine-disrupting chemicals (EDCs). The food exposed EDCs need to be identified and classified to effectuate a cautious consumption of food by all and especially by vulnerable groups. Aim: The aim of the present review was to discuss food as a source of exposure to common endocrine disruptors in humans. This review presents the occurrence and levels of some of the critical endocrine disruptors exposed through frequently consumed diets. Methods: The major source of data was PubMed, besides other relevant publications. The focus was laid on data from the last five years, however significant earlier data was also considered. Conclusion: The food as a source of endocrine disruptors to humans cannot be neglected. It is highly imperative for the consumer to recognize food as a source of EDCs and make informed choices in the consumption of food items.


Bioanalysis ◽  
2021 ◽  
Author(s):  
Rajesh Pradhan ◽  
Siddhanth Hejmady ◽  
Rajeev Taliyan ◽  
Gautam Singhvi ◽  
Rajesh Khadgawat ◽  
...  

Endocrine-disrupting chemicals (EDCs) are xenobiotics that disrupt the endocrine system in humans at ecologically significant concentrations. Various substances are exposed to human health via routes including food, water, air and skin that result in disastrous maladies at low doses as well. Therefore EDCs need a meticulous strategy of analysis for dependable and consistent monitoring in humans. The management and risk assessment necessitate advancements in the detection methodologies of EDCs. Hyphenated MS-based chromatograph and other validated laboratory analysis methods are widely available and employed. Besides, in vitro bioassay techniques and biosensors are also used to conduct accurate toxicological tests. This article provides a revision of various bioanalytical detection methods and technologies for the clinical estimation of EDCs.


2021 ◽  
Vol 22 (2) ◽  
pp. 933
Author(s):  
Maria E. Street ◽  
Karine Audouze ◽  
Juliette Legler ◽  
Hideko Sone ◽  
Paola Palanza

Endocrine disrupting chemicals (EDCs) are exogenous chemicals which can disrupt any action of the endocrine system, and are an important class of substances which play a role in the Developmental Origins of Health and Disease (DOHaD) [...]


2001 ◽  
Vol 14 (1) ◽  
pp. 59-64
Author(s):  
R. Yoshiyuki Osamura ◽  
Toshiki Iwasaka ◽  
Shinobu Umemura

Author(s):  
Chaitanya K. Jaladanki ◽  
Yang He ◽  
Li Na Zhao ◽  
Sebastian Maurer-Stroh ◽  
Lit-Hsin Loo ◽  
...  

Abstract Nuclear receptors (NRs) are key regulators of energy homeostasis, body development, and sexual reproduction. Xenobiotics binding to NRs may disrupt natural hormonal systems and induce undesired adverse effects in the body. However, many chemicals of concerns have limited or no experimental data on their potential or lack-of-potential endocrine-disrupting effects. Here, we propose a virtual screening method based on molecular docking for predicting potential endocrine-disrupting chemicals (EDCs) that bind to NRs. For 12 NRs, we systematically analyzed how multiple crystal structures can be used to distinguish actives and inactives found in previous high-throughput experiments. Our method is based on (i) consensus docking scores from multiple structures at a single functional state (agonist-bound or antagonist-bound), (ii) multiple functional states (agonist-bound and antagonist-bound), and (iii) multiple pockets (orthosteric site and alternative sites) of these NRs. We found that the consensus enrichment from multiple structures is better than or comparable to the best enrichment from a single structure. The discriminating power of this consensus strategy was further enhanced by a chemical similarity-weighted scoring scheme, yielding better or comparable enrichment for all studied NRs. Applying this optimized method, we screened 252 fatty acids against peroxisome proliferator-activated receptor gamma (PPARγ) and successfully identified 3 previously unknown fatty acids with Kd = 100–250 μM including two furan fatty acids: furannonanoic acid (FNA) and furanundecanoic acid (FUA), and one cyclopropane fatty acid: phytomonic acid (PTA). These results suggested that the proposed method can be used to rapidly screen and prioritize potential EDCs for further experimental evaluations.


2014 ◽  
Vol 58 (2) ◽  
pp. 153-161 ◽  
Author(s):  
Elaine Maria Frade Costa ◽  
Poli Mara Spritzer ◽  
Alexandre Hohl ◽  
Tânia A. S. S. Bachega

Environmental agencies have identified a growing number of environmental contaminants that have endocrine disrupting activity, and these can become a major public health problem. It is suggested that endocrine disruptors could account for the higher-than-expected increase in the prevalence of some non-communicable diseases, such as obesity, diabetes, thyroid diseases, and some cancers. Several endocrine Disrupting Chemicals (EDCs), such as pesticides, bisphenol A, phthalates, dioxins, and phytoestrogens, can interact with the female reproductive system and lead to endocrine disruption. Initially, it was assumed that EDCs exert their effects by binding to hormone receptors and transcription factors, but it is currently known that they may also alter the expression of enzymes involved in the synthesis or catabolism of steroids. Biomonitoring studies have identified these compounds in adults, children, pregnant women, and fetuses. Among the diseases of the female reproductive tract associated with EDCs exposure are the following: precocious puberty, polycystic ovary syndrome, and premature ovarian failure. The different populations of the world are exposed to a great number of chemicals through different routes of infection; despite the various available studies, there is still much doubt regarding the additive effect of a mixture of EDCs with similar mechanisms of action.


2013 ◽  
Vol 67 (7) ◽  
pp. 1551-1556 ◽  
Author(s):  
C. Noutsopoulos ◽  
D. Mamais ◽  
V. Samaras ◽  
T. Bouras ◽  
M. Marneri ◽  
...  

Endocrine disrupting chemicals (EDCs) are compounds of mainly anthropogenic origin that interfere with the endocrine system of animals and humans thus causing a series of disorders. Wastewater treatment plants are one of the major routes for transporting such chemicals to the water courses. In the context of this study, several chlorination batch tests were performed in order to assess the effectiveness of chlorination to remove bisphenol A (BPA), triclosan (TCS), nonylphenol (NP) and its ethoxylates (NP1EO and NP2EO) from secondary effluent. According to the results, an appreciable removal of NP, BPA and TCS to the order of 60–84% was observed as an effect of moderate chlorination doses. This was not the case for NP1EO and NP2EO as even at high chlorine doses, removal efficiencies were lower (37% for NP1EO and 52% for NP2EO). Removal efficiencies of NP, BPA and TCS are practically independent of contact time, although this was not the case for NP1EO and NP2EO. Based on toxicity experiments, it is anticipated that following chlorination of the target chemicals, production of more toxic metabolites is taking place. Therefore the effectiveness of chlorination to remove EDCs is questionable and more research is needed to guarantee safe wastewater reuse.


Sign in / Sign up

Export Citation Format

Share Document