scholarly journals The Yin and Yang of Autosomal Recessive Primary Microcephaly Genes: Insights from Neurogenesis and Carcinogenesis

2020 ◽  
Vol 21 (5) ◽  
pp. 1691 ◽  
Author(s):  
Xiaokun Zhou ◽  
Yiqiang Zhi ◽  
Jurui Yu ◽  
Dan Xu

The stem cells of neurogenesis and carcinogenesis share many properties, including proliferative rate, an extensive replicative potential, the potential to generate different cell types of a given tissue, and an ability to independently migrate to a damaged area. This is also evidenced by the common molecular principles regulating key processes associated with cell division and apoptosis. Autosomal recessive primary microcephaly (MCPH) is a neurogenic mitotic disorder that is characterized by decreased brain size and mental retardation. Until now, a total of 25 genes have been identified that are known to be associated with MCPH. The inactivation (yin) of most MCPH genes leads to neurogenesis defects, while the upregulation (yang) of some MCPH genes is associated with different kinds of carcinogenesis. Here, we try to summarize the roles of MCPH genes in these two diseases and explore the underlying mechanisms, which will help us to explore new, attractive approaches to targeting tumor cells that are resistant to the current therapies.

2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
Marine Barbelanne ◽  
William Y. Tsang

Autosomal recessive primary microcephaly (MCPH) is a rare hereditary neurodevelopmental disorder characterized by a marked reduction in brain size and intellectual disability. MCPH is genetically heterogeneous and can exhibit additional clinical features that overlap with related disorders including Seckel syndrome, Meier-Gorlin syndrome, and microcephalic osteodysplastic dwarfism. In this review, we discuss the key proteins mutated in MCPH. To date, MCPH-causing mutations have been identified in twelve different genes, many of which encode proteins that are involved in cell cycle regulation or are present at the centrosome, an organelle crucial for mitotic spindle assembly and cell division. We highlight recent findings on MCPH proteins with regard to their role in cell cycle progression, centrosome function, and early brain development.


2014 ◽  
Vol 23 (22) ◽  
pp. 5940-5949 ◽  
Author(s):  
Muzammil A. Khan ◽  
Verena M. Rupp ◽  
Meritxell Orpinell ◽  
Muhammad S. Hussain ◽  
Janine Altmüller ◽  
...  

2021 ◽  
Author(s):  
Aurora Savino ◽  
Charles D Nichols

Psychedelic drugs are gaining attention from the scientific community as potential new compounds for the treatment of psychiatric diseases such as mood and substance use disorders. The 5-HT2A receptor has been identified as the main molecular target, and early studies pointed to an effect on the expression of neuroplasticity genes. Analysing RNA-seq data from the prefrontal cortex of rats chronically treated with lysergic acid diethylamide (LSD), we describe the psychedelic-induced rewiring of gene co-expression networks, which become less centralized but more complex, with an overall increase in signalling entropy, typical of highly plastic systems. Intriguingly, signalling entropy mirrors, at the molecular level, the increased brain entropy reported through neuroimaging studies in human, suggesting the underlying mechanisms of higher-order phenomena. Moreover, from the analysis of network topology we identify potential transcriptional regulators and imply different cell types in psychedelics' activity.


Antioxidants ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 901 ◽  
Author(s):  
Elena Obrador ◽  
Rosario Salvador ◽  
Rafael López-Blanch ◽  
Ali Jihad-Jebbar ◽  
Soraya L. Vallés ◽  
...  

Amyotrophic lateral sclerosis (ALS) is a progressive motor neuron (MN) disease. Its primary cause remains elusive, although a combination of different causal factors cannot be ruled out. There is no cure, and prognosis is poor. Most patients with ALS die due to disease-related complications, such as respiratory failure, within three years of diagnosis. While the underlying mechanisms are unclear, different cell types (microglia, astrocytes, macrophages and T cell subsets) appear to play key roles in the pathophysiology of the disease. Neuroinflammation and oxidative stress pave the way leading to neurodegeneration and MN death. ALS-associated mitochondrial dysfunction occurs at different levels, and these organelles are involved in the mechanism of MN death. Molecular and cellular interactions are presented here as a sequential cascade of events. Based on our present knowledge, the discussion leads to the idea that feasible therapeutic strategies should focus in interfering with the pathophysiology of the disease at different steps.


2019 ◽  
Vol 2019 ◽  
pp. 1-7 ◽  
Author(s):  
Xiao-Jing Yang ◽  
Ya-Ming Xi ◽  
Zi-Jian Li

Hematological malignancies including leukemia and lymphoma can severely impact human health. With the current therapies combined with chemotherapy, stem cell transplantation, radiotherapy, and immunotherapy, the prognosis of hematologic malignancies improved significantly. However, most hematological malignancies are still incurable. Therefore, research for novel treatment options was continuing with the natural product as one source. Icaritin is a compound extracted from a traditional Chinese herb,Epimedium Genus, and demonstrated an antitumor effect in various neoplasms including hematological malignancies such as leukemia, lymphoma, and multiple myeloma. In hematological malignancies, icaritin showed multiple cytotoxic effects to induce apoptosis, arrest the cell cycle, inhibit proliferation, promote differentiation, restrict metastasis and infiltration, and suppress the oncogenic virus. The proved underlying mechanisms of the cytotoxic effects of icaritin are different in various cell types of hematological malignancies but associated with the critical cell signal pathway, including PI3K/Akt, JAK/STAT3, and MAPK/ERK/JNK. Although the primary target of icaritin is still unspecified, the existing evidence indicates that icaritin is a potential novel therapeutic agent for neoplasms as with hematological malignancies. Here, in the field of hematology, we reviewed the reported activity of icaritin in hematologic malignancies and the underlying mechanisms and recognized icaritin as a candidate for therapy of hematological malignancies.


2009 ◽  
Vol 25 (6) ◽  
pp. 715-720 ◽  
Author(s):  
Rizwana Kousar ◽  
Hira Nawaz ◽  
Maryam Khurshid ◽  
Ghazanfer Ali ◽  
Saad Ullah Khan ◽  
...  

Author(s):  
Christian J. Hendriksz ◽  
Francois Karstens

There are 8 different types of diseases of the mucopolysaccharides, each caused by a deficiency in one of 10 different enzymes involved in the degradation of glycosaminoglycans (GAGs). Partially degraded GAGs accumulate within the lysosomes of many different cell types and lead to clinical symptoms and excretion of large amounts of GAGs in the urine. Heritability is autosomal recessive except for MPS type II, which is X-linked. The disorders are chronic and progressive and, although the specific types all have their individual features, they share an abundance of clinical similarities. All involve the musculoskeletal, the cardiovascular, the pulmonary and the central nervous system.


Neurogenetics ◽  
2006 ◽  
Vol 7 (2) ◽  
pp. 105-110 ◽  
Author(s):  
Asma Gul ◽  
Muhammad Jawad Hassan ◽  
Saqib Mahmood ◽  
Wenje Chen ◽  
Safa Rahmani ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document