scholarly journals Conditional Up-Regulation of SERCA2a Exacerbates RyR2-Dependent Ventricular and Atrial Arrhythmias

2020 ◽  
Vol 21 (7) ◽  
pp. 2535
Author(s):  
Bin Liu ◽  
Qing Lou ◽  
Heather Smith ◽  
Florencia Velez-Cortes ◽  
Wolfgang H. Dillmann ◽  
...  

Ryanodine receptor 2 (RyR2) and SERCA2a are two major players in myocyte calcium (Ca) cycling that are modulated physiologically, affected by disease and thus considered to be potential targets for cardiac disease therapy. However, how RyR2 and SERCA2a influence each others’ activities, as well as the primary and secondary consequences of their combined manipulations remain controversial. In this study, we examined the effect of acute upregulation of SERCA2a on arrhythmogenesis by conditionally overexpressing SERCA2a in a mouse model featuring hyperactive RyR2s due to ablation of calsequestrin 2 (CASQ2). CASQ2 knock-out (KO) mice were crossbred with doxycycline (DOX)-inducible SERCA2a transgenic mice to generate KO-TG mice. In-vivo ECG studies have shown that induction of SERCA2a (DOX+) overexpression markedly exacerbated both ventricular and atrial arrhythmias in vivo, compared with uninduced KO-TG mice (DOX-). Consistent with that, confocal microscopy in both atrial and ventricular myocytes demonstrated that conditional upregulation of SERCA2a enhanced the rate of occurrence of diastolic Ca release events. Additionally, deep RNA sequencing identified 17 downregulated genes and 5 upregulated genes in DOX+ mice, among which Ppp1r13l, Clcn1, and Agt have previously been linked to arrhythmias. Our results suggest that conditional upregulation of SERCA2a exacerbates hyperactive RyR2-mediated arrhythmias by further elevating diastolic Ca release.

2020 ◽  
Author(s):  
Luisa Diomede ◽  
Elisa R. Zanier ◽  
Maria Monica Barzago ◽  
Gloria Vegliante ◽  
Margherita Romeo ◽  
...  

Abstract Background Traumatic brain injury (TBI) is associated with widespread tau pathology in about thirty percent of patients surviving late after injury. We previously found that TBI in mice induces a transmissible tau pathology (tauTBI), with late cognitive decline and synaptic dysfunction. However, it is not clear whether tauTBI is a marker of ongoing neurodegeneration or a driver of functional decline. We employed the nematode C. elegans, which can recognize pathogenic forms of misfolded proteins, to investigate whether tauTBI is the primary toxic culprit in post-TBI neurodegeneration. Methods We developed an original approach involving the administration of brain homogenates from TBI mice to C. elegans, a valuable model for rapidly investigating the pathogenic effects of misfolded proteins in vivo. Brain homogenates from transgenic mice overexpressing tau P301L, a tauopathy mouse model, as well as pre-aggregated recombinant tau were employed to test whether abnormal tau conformers play a causal role in driving toxicity in TBI. Results Worms given brain homogenates from chronic but not acute TBI mice, or from mice in which tauTBI had been transmitted by intracerebral inoculation, had impaired motility and neuromuscular synaptic transmission. Results were similar when worms were exposed to brain homogenates from transgenic mice overexpressing tau P301L, a tauopathy mouse model, suggesting that TBI-induced and mutant tau have similar toxic properties. Harsh protease digestion to eliminate the protein component of the homogenates or pre-incubation with anti-tau antibodies abolished the toxicity. Homogenates of chronic TBI brains from tau knock-out mice were not toxic to C. elegans, whereas pre-aggregated recombinant tau was sufficient to impair their motility. Conclusions These results support a vital role of abnormal tau species in chronic neurodegeneration after TBI supporting the idea that targeting pathological tau may point to a therapeutic opportunity in trauma, and set the groundwork for the development of a C. elegans-based platform for screening anti-tau compounds.


2000 ◽  
Vol 14 (8) ◽  
pp. 1125-1136 ◽  
Author(s):  
Josep M. Colomer ◽  
Anthony R. Means

Abstract Although isoforms of Ca2+/calmodulin-dependent protein kinase II (CaMKII) have been implicated in the regulation of gene expression in cultured cells, this issue has yet to be addressed in vivo. We report that the overexpression of calmodulin in ventricular myocytes of transgenic mice results in an increase in the Ca2+/calmodulin-independent activity of endogenous CaMKII. The calmodulin transgene is regulated by a 500-bp fragment of the atrial natriuretic factor (ANF) gene promoter which, based on cell transfection studies, is itself known to be regulated by CaMKII. The increased autonomous activity of CaMKII maintains the activity of the transgene and establishes a positive feedforward loop, which also extends the temporal expression of the endogenous ANF promoter in ventricular myocytes. Both the increased activity of CaMKII and transcriptional activation of ANF are highly selective responses to the chronic overexpression of calmodulin. These results indicate that CaMKII can regulate gene expression in vivo and suggest that this enzyme may represent the Ca2+-dependent target responsible for reactivation of the ANF gene during ventricular hypertrophy.


2013 ◽  
Vol 113 (suppl_1) ◽  
Author(s):  
Sanjeewa A Goonasekera ◽  
Jop van Berlo ◽  
Adam R Burr ◽  
Robert N Correll ◽  
Allen J York ◽  
...  

Background: STIM1, an ER/SR resident Ca 2+ sensing protein regulates Ca 2+ entry following internal Ca 2+ store depletion in a broad range of tissues and cell types. However their putative roles in excitable tissue such as cardiac myocytes is uncertain. Results: Here we generated a mouse model of STIM1 overexpression in cardiac and skeletal muscle. Western blot analysis suggested approximately 4-6 fold STIM1 overexpression in Tg mouse hearts compared to Ntg littermates. Immunocytochemistry carried out in ventricular myocytes revealed that STIM1 and the cardiac ryanodine receptor (RyR2) co-localize. Functionally, the amplitude of Ca 2+ entry following SR Ca 2+ depletion was 2-fold greater in myocytes isolated from STIM1 Tg mice compared to NTg littermates. Echocardiographic analysis in STIM1 Tg mice showed age dependent remodeling of the myocardium with a significant decrease in fractional shortening at 16 weeks of age (14.4.5±3.8 in STIM1 Tg vs. 36.9±1.5 in Ntg). These changes were accompanied by a significant increase in heart weight to tibia length (13.6 +/- 1.4 vs 6.5 +/- 0.24) and increased lung weight to tibia length ratio (11.6+/- 2.1 vs 8.1 +/- 0.38) in STIM1 Tg mice compared to Ntg littermates. Photometry experiments in isolated ventricular myocytes demonstrated significantly increased Ca 2+ transient amplitude with an unexpected decrease in the SR Ca 2+ load associated with STIM1 overexpression. In addition transgenic mice showed increased calcineurin-nuclear factor of activated T cells (NFAT) activation in vivo, increased CaMKII activity, interstitial fibrosis and exaggerated hypertrophy following two weeks of neuroendocrine agonist or pressure overload stimulation. Conclusion: Our observations suggest that STIM1 overexpression by itself can lead to cardiac hypertrophy and contribute to pathological cardiac remodeling and possibly sudden cardiac death. The molecular mechanisms underlying these phenomena are currently under investigation.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 2936-2936
Author(s):  
Porsha L. Smith ◽  
Fengting Yan ◽  
John T. Patton ◽  
Lapo Alinari ◽  
Vrajesh Karkhanis ◽  
...  

Abstract Introduction: Emerging data collected from whole genome and epigenomic studies in solid and blood cancers has pointed toward dysregulation of chromatin remodelers as a unique class of cancer drivers. Next generation sequencing of lymphoma has identified several mutations affecting enzymes that regulate epigenetic control of gene expression. The epigenetic modifier protein arginine methyltransferase 5 (PRMT5) that has been shown to be essential for Epstein-Barr virus-driven B-cell transformation, is overexpressed in several histologic subtypes of B-cell non-Hodgkin's lymphomas (NHL) and is required for the driver activity of oncogenes such as MYC and NOTCH. While these findings suggest that PRMT5 may act as a driver of lymphomagenesis, definitive experiments to address its driver activity have yet to be performed. To address this question, we developed a transgenic mouse model by immunoglobulin m heavy chain enhancer/promoter (Em)-driven PRMT5 over expression in the lymphoid compartment of FVB/N mice. Methods: Eµ-hPRMT5 transgenic mice were created by injecting a vector containing floxed human PRMT5 under the control of the Eµ enhancer/promoter into FVB/N pronuclei that were implanted into pseudo-pregnant FVB/N mice. We obtained 5 founder lines demonstrating the presence of transgene construct by genotype PCR analysis of tail snip DNA. Founder mice were crossed with wild type FVB/N mice to obtain a F1 generation. Mice were followed clinically in standard pathogen-free housing until exhibiting phenotypic features at which time necropsy was performed. Immunophenotypic analysis was performed by flow cytometry, clonality by T cell receptor (TCR) Vb PCR, and pathology by hematoxylin-eosin staining and tissue micro-arrays developed for immunohistochemical staining (IHCS). Statistical significance was determined using a two-tail t-test and survival analysis conducted using Kaplan Meier curves. Results: F1 generation Eµ-hPRMT5 mice significantly overexpressed PRMT5 mRNA in unpurified splenocytes or bone marrow relative to non-transgenic mice (p-value < 0.001). Sorting B (CD19), NK (NK1.1) and T-cell (CD3) mononuclear subsets from splenocytes collected from Eµ-hPRMT5 mice (n=3/group) revealed PRMT5 mRNA to be overexpressed 37-fold (p-value <0.01), 7-fold (p-value <0.01) and 6-fold (p-value <0.05), respectively compared to WT FVB/N mice. All 5 founder lines were found to develop aggressive lymphomas at a statistically significant higher incidence compared to wild type (WT) FVB/N mice (range 10.7-34.6% lymphomagenesis). Gross anatomical characterization of Lymphoma bearing mice demonstrated focal lymphoid tumors, lymphadenopathy, organomegaly (liver, spleen, kidney), and malignant atypical lymphocytosis. Flow cytometric and IHCS studies showed features consistent with immature pre B and T lymphoblastic lymphomas (LL). Pre B LLs were characterized by high surface IgM, TdT and CD19 expression as analyzed by flow cytometry. Pre T LL demonstrated cytoplasmic CD3, TdT, and CD43 expression. We successfully developed a T LL cell line (Tg813) from a pre T-LL tumor isolated from a thymic tumor. Tg813 was clonal (Vb-17), demonstrated complex cytogenetic features, and over-expressed PRMT5, CYCLIN D1, CYCLIN D3, C-MYC transcript and protein, and the PRMT5 histone mark, symmetric (Me2)-H4R3. Inhibition of PRMT5 with a small molecule inhibitor, shRNA or genetic deletion using CRISPR/CAS9 PRMT5-specific gRNA (targeting exon 2) led to reduced proliferation, apoptosis and loss of CYCLIN D1 and C-MYC expression in Tg813. Engraftment of the Tg813 LL into both SCID and immunocompetent FVB/N mice led to disseminated lymphomas 21 days post-engraftment. In vivo induced expression of PRMT5 gRNA in CAS9+ Tg813 tumors is currently underway. Conclusions:The spontaneous lymphomagenesis observed in the Eµ-hPRMT5 transgenic mouse model supports the hypothesis that PRMT5 over-expression can provide sufficient driver activity for this disease. We describe a novel in vivo and in vitro model of PRMT5-driven LL that provides a useful platform for studying the biologic role of this epigenetic modifier in cancer and for development of PRMT5 targeted therapeutic approaches for lymphoma. Disclosures Baiocchi: Essanex: Research Funding.


Blood ◽  
2010 ◽  
Vol 115 (16) ◽  
pp. 3341-3345 ◽  
Author(s):  
Ke Cheng ◽  
Paolo Sportoletti ◽  
Keisuke Ito ◽  
John G. Clohessy ◽  
Julie Teruya-Feldstein ◽  
...  

Abstract Although NPM1 gene mutations leading to aberrant cytoplasmic expression of nucleophosmin (NPMc+) are the most frequent genetic lesions in acute myeloid leukemia, there is yet no experimental model demonstrating their oncogenicity in vivo. We report the generation and characterization of a transgenic mouse model expressing the most frequent human NPMc+ mutation driven by the myeloid-specific human MRP8 promoter (hMRP8-NPMc+). In parallel, we generated a similar wild-type NPM trans-genic model (hMRP8-NPM). Interestingly, hMRP8-NPMc+ transgenic mice developed myeloproliferation in bone marrow and spleen, whereas nontransgenic littermates and hMRP8-NPM transgenic mice remained disease free. These findings provide the first in vivo evidence indicating that NPMc+ confers a proliferative advantage in the myeloid lineage. No spontaneous acute myeloid leukemia was found in hMPR8-NPMc+ or hMRP8-NPM mice. This model will also aid in the development of therapeutic regimens that specifically target NPMc+.


2005 ◽  
Vol 22 (5) ◽  
pp. 553-560 ◽  
Author(s):  
BRETT A. SCHWEERS ◽  
MICHAEL A. DYER

The use of knock-out and transgenic mice has been instrumental for advancing our understanding of retinal development and disease. In this perspective, we review existing genetic approaches to studying retinal development and present a series of new genetic tools that complement the use of standard knock-out and transgenic mice. Particular emphasis is placed on elucidating cell-autonomous and non-cell-autonomous roles of genes important for retinal development and disease in vivo. In addition, a series of gene-swapping vectors can be used to elucidate the function of proteins that regulate key processes in retinal development and a wide variety of retinopathies.


2019 ◽  
Vol 40 (Supplement_1) ◽  
Author(s):  
P Bengel ◽  
C Krekeler ◽  
S Ahmad ◽  
P Tirilomis ◽  
K Toischer ◽  
...  

Abstract Background Cardiac pathologies like hypertrophy and heart failure are known to be associated with proarrhythmogenic triggers like early- (EADs) and delayed afterdepolarizations (DADs) that can be partly attributed to an augmentation of late sodium current (INaL). Enhanced INaL is closely connected with increased activity of Ca2+/calmodulin dependent-kinase II (CaMKII) in pathology as it is enhanced by CaMKII on the one hand but can also indirectly increase CaMKII-activity on the other. We recently found neuronal sodium channel NaV1.8 to be involved in INaL-augmentation in heart failure and cardiac hypertrophy. Here, we studied possible antiarrhythmic effects of NaV1.8-inhibition in a transgenic mouse model with enhanced CaMKII-expression by selectively knocking out NaV1.8. Methods/Results To investigate antiarrhythmic effects of NaV1.8-depletion in-vivo and in-vitro we crossbred CaMKII-transgenic mice (CaMKII+/T) with NaV1.8-knock-out mice (SCN10A−/−). Surprisingly, CaMKII+/T-mice lacking NaV1.8 (CaMKII+/T & SCN10A−/−) showed a significantly improved survival compared to CaMKII+/T alone (97.5 vs 72.0 days, p<0.05). Heart weight to tibia length ratio was significantly increased in CaMKII+/T-mice compared to wild-type, without any differences between CaMKII+/T and CaMKII+/T & SCN10A−/−. To investigate the underlying mechanisms out of this observation we isolated single cardiomyocytes and performed patch-clamp experiments as well as confocal microscopy to measure Ca2+-transients and diastolic Ca2+-waves. INaL-integral was significantly smaller in cardiomyocytes from CaMKII+/T & SCN10A−/−-mice compared to CaMKII+/T alone. During action potential recordings, significantly less afterdepolarizations occurred in CaMKII+/T & SCN10A−/− compared to cardiomyocytes from CaMKII+/T -mice (16.7/min vs 34.9/min, p<0.05). There was a trend of less cells exhibiting diastolic Ca2+-waves in Ca2+-measurements from CaMKII+/T & SCN10A−/− compared to CaMKII+/T (15% vs 25%, p=0.09). As some cells showed more than one event, we calculated the frequency of Ca2+-waves and found a significant reduction of Ca2+-waves in CaMKII+/T & SCN10A−/− vs. CaMKII+/T (22.8/min vs 43.0/min, p<0.05). Moreover, the time to the first event was significantly longer in CaMKII+/T & SCN10A−/−. Ca2+-transient amplitude (F/F0) was significantly lower in CaMKII+/T compared to CaMKII+/T & SCN10A−/− (4.6 vs. 5.3, p=0.05). Further, Ca2+-extrusion from the cytosol was significantly faster in CaMKII+/T & SCN10A−/−. Conclusion Our data demonstrates, that inhibition of INaL by targeting NaV1.8 has a potent antiarrhythmic potential as we found a reduction of EADs, DADs and diastolic Ca2+-waves in CaMKII+/T & SCN10A−/−-cardiomyocytes. This antiarrhythmic potential appears to be potent enough to improve survival and to rescue the proarrhythmogenic phenotype of CaMKII-overexpression. However, further in-vivo experiments are necessary to investigate NaV1.8-inhibition for a possible therapeutic approach.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 1304-1304
Author(s):  
Jessica Consiglio ◽  
Andrea Vecchione ◽  
Marco Galasso ◽  
Alberto Rocci ◽  
Mario Acunzo ◽  
...  

Abstract Abstract 1304 Recently, a class of noncoding RNAs called microRNA (miRNAs) has emerged as critical gene regulators in cell growth, differentiation, disease and development. MiRNAs are 18–24 nucleotide long noncoding RNAs, which regulate gene expression by pairing with 3′ untranslated region (UTR) of target mRNA and inhibiting protein translation and/or inducing mRNA degradation. Deregulated miRNA expression is reported in various human diseases including lymphomas, suggesting an important role in their pathogenesis. According to WHO classification, Burkitt lymphoma (BL) is a rare, highly aggressive NHL composed of monomorphic medium-sized B cells with multiple nucleoli and numerous mitotic figures and is more common in children than in adults. The molecular feature of BL is the translocation that places MYC under the control of immunoglobulin gene regulatory elements. High levels of c-MYC have been clearly shown to have a tumour-promoting effect. However, there is recent evidence that infrequent cases may lack an identifiable MYC translocation, the explanation for which is still uncertain, though suggesting the existence of pathogenetic mechanisms alternative to genetic alterations. Over the past years miRNA signatures have been described to characterize and classify different types of BL or to investigate the expression of miRNAs possibly regulated by c-Myc in BL cases positive or negative for Myc translocation. However, it remained unclear the functional role of differentially expressed miRNAs and no further studies have been conducted. We performed miRNA expression profile to gain further insights into the molecular pathology of BL. We conducted array analysis on a set of 5 sporadic BL patients, 3 endemic BL patients, 9 reactive tissues and 11 cases of mononucleosis. Our profile is the first one that shows the different expression between BL cases and normal B cells whereas recent miRNA profiles have been conducted in BL compared to other B-NHL (B-CLL, MCL & FL). A common trend of miRNAs altered expression was also observed by NanoString analysis in 10 BL cell lines compared to 5 normal CD-19+ B cells. Among several miRNAs previously described be deregulated in BL we identified a severe down-regulation of miR-221, miR-222 in all classes of comparisons we analyzed. The down-regulation of miR-221 and miR-222 associated to BL has been also confirmed by q-RT-PCR method in a different cohort of BL patients (20) compared to the healthy controls (6). We found that interesting considering the up-regulation of miR-221 and miR-222 previously confirmed in a lot of solid tumors by multiple studies. We are investigating a different role of the cluster miR-222 and miR-221 in lymphomas that have a different process in carcinogenesis than solid tumors. In vivo models to study the lymphomagenesis of BL have been created but until now no one studied the importance of the miRNAs in vivo. We analyzed the expression of miR-221 and miR-222 in a Myc transgenic mouse model. The transgene construct consists of the Myc oncogene (c-myc) in association with the Emu immunoglobulin heavy chain enhancer and Myc promoter. Expression of the mouse Myc transgene is restricted to the B cell lineage. Previously it has been shown an increase of pre-B cells in the bone marrow throughout life of hemizygotes and a transient increase in large pre-B cells in the blood at 3–4 weeks of age; moreover spontaneous pre-B and B cell lymphomas reach an incidence of 50% at 15–20 weeks in hemizygous progeny of a wildtype female mated with a hemizygous male. We observed the development of Burkitt lymphoma within 10 weeks of birth in 14 out of 25 Eu-Myc transgenic mice and a premature death in 5 out or 25 transgenic mice within 6–8 weeks of birth without showing any enlarged lymph nodes. Transgenic mice with masses showed the same phenotype characterized by enlarged spleen (3 fold), lymphosarcomas associated with BL and enlarged lymph nodes around the neck area. B-cells have been negatively selected from enlarged lymph nodes and enlarged spleen. A qRT-PCR has been conducted to evaluate the miR-221 and miR-222 expression. The miRNA levels showed a down-regulation in B cells collected from the masses when compared to normal B cells derived from the spleen of WT mice. In conclusion, our study reveals new insights into the functional significance in loss of miR-221 and miR-222 expression in BL pathogenesis. Disclosures: No relevant conflicts of interest to declare.


2018 ◽  
Vol 11 (10) ◽  
pp. e201700337 ◽  
Author(s):  
Won Hyuk Jang ◽  
Soonjae Kwon ◽  
Sehwan Shim ◽  
Won-Suk Jang ◽  
Jae Kyung Myung ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document