scholarly journals The Role of Deubiquitinating Enzymes in the Various Forms of Autophagy

2020 ◽  
Vol 21 (12) ◽  
pp. 4196 ◽  
Author(s):  
Tamás Csizmadia ◽  
Péter Lőw

Deubiquitinating enzymes (DUBs) have an essential role in several cell biological processes via removing the various ubiquitin patterns as posttranslational modification forms from the target proteins. These enzymes also contribute to the normal cytoplasmic ubiquitin pool during the recycling of this molecule. Autophagy, a summary name of the lysosome dependent self-degradative processes, is necessary for maintaining normal cellular homeostatic equilibrium. Numerous forms of autophagy are known depending on how the cellular self-material is delivered into the lysosomal lumen. In this review we focus on the colorful role of DUBs in autophagic processes and discuss the mechanistic contribution of these molecules to normal cellular homeostasis via the possible regulation forms of autophagic mechanisms.

Author(s):  
Angeles C. Tecalco–Cruz

Abstract:: Human interferon–stimulated gene 15 (ISG15) is a 15–kDa ubiquitin–like protein that can be detected as either free ISG15 or covalently associated with its target proteins through a process termed ISGylation. Interestingly, extracellular free ISG15 has been proposed as a cytokine–like protein, whereas ISGylation is a posttranslational modification. ISG15 is a small protein with implications in some biological processes and pathologies that include cancer. This review highlights the findings of both free ISG15 and protein ISGylation involved in several molecular pathways, emerging as central elements in some cancer types.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Yu-chen Guo ◽  
Shi-wen Zhang ◽  
Quan Yuan

Bone remodeling, which is essential for bone homeostasis, is controlled by multiple factors and mechanisms. In the past few years, studies have emphasized the role of the ubiquitin-dependent proteolysis system in regulating bone remodeling. Deubiquitinases, which are grouped into five families, remove ubiquitin from target proteins and are involved in several cell functions. Importantly, a number of deubiquitinases mediate bone remodeling through regulating differentiation and/or function of osteoblast and osteoclasts. In this review, we review the functions and mechanisms of deubiquitinases in mediating bone remodeling.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Sun Joo Cha ◽  
Hayoung Kim ◽  
Hyun-Jun Choi ◽  
Sanghyun Lee ◽  
Kiyoung Kim

Protein glutathionylation is a redox-mediated posttranslational modification that regulates the function of target proteins by conjugating glutathione with a cysteine thiol group on the target proteins. Protein glutathionylation has several biological functions such as regulation of metabolic pathways, calcium homeostasis, signal transduction, remodeling of cytoskeleton, inflammation, and protein folding. However, the exact role and mechanism of glutathionylation during irreversible oxidative stress has not been completely defined. Irreversible oxidative damage is implicated in a number of neurological disorders. Here, we discuss and highlight the most recent findings and several evidences for the association of glutathionylation with neurodegenerative diseases and the role of glutathionylation of specific proteins in the pathogenesis of neurodegenerative diseases. Understanding the important role of glutathionylation in the pathogenesis of neurodegenerative diseases may provide insights into novel therapeutic interventions.


2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Fatemeh Malekvandfard ◽  
Leila Zare ◽  
Seyedeh Sahar Mortazavi Farsani ◽  
Mahsa Motavaf

: In recent decades, infertility is becoming a public health issue. Male spermatogenesis failure has been considered a major contributory factor to infertility. Mammalian spermatogenesis is a well-defined process, requiring highly regulation processes in both transcriptional and the posttranscriptional levels. Discovery of microRNAs (miRNAs or miR) as essential class of gene expression regulators has provided new insights into a multitude of biological processes including spermatogenesis. In current review study, we first provide a short overview of spermatogenesis process, and then focus on recent studies that have elucidated the essential role of miRNAs in different steps of sperm production.


2012 ◽  
Vol 50 (01) ◽  
Author(s):  
N Lange ◽  
S Sieber ◽  
A Erhardt ◽  
G Sass ◽  
HJ Kreienkamp ◽  
...  

1995 ◽  
Vol 74 (05) ◽  
pp. 1323-1328 ◽  
Author(s):  
Dominique Lasne ◽  
José Donato ◽  
Hervé Falet ◽  
Francine Rendu

SummarySynthetic peptides (TRAP or Thrombin Receptor Activating Peptide) corresponding to at least the first five aminoacids of the new N-terminal tail generated after thrombin proteolysis of its receptor are effective to mimic thrombin. We have studied two different TRAPs (SFLLR, and SFLLRN) in their effectiveness to induce the different platelet responses in comparison with thrombin. Using Indo-1/AM- labelled platelets, the maximum rise in cytoplasmic ionized calcium was lower with TRAPs than with thrombin. At threshold concentrations allowing maximal aggregation (50 μM SFLLR, 5 μM SFLLRN and 1 nM thrombin) the TRAPs-induced release reaction was about the same level as with thrombin, except when external calcium was removed by addition of 1 mM EDTA. In these conditions, the dense granule release induced by TRAPs was reduced by over 60%, that of lysosome release by 75%, compared to only 15% of reduction in the presence of thrombin. Thus calcium influx was more important for TRAPs-induced release than for thrombin-induced release. At strong concentrations giving maximal aggregation and release in the absence of secondary mediators (by pretreatment with ADP scavengers plus aspirin), SFLLRN mobilized less calcium, with a fast return towards the basal level and induced smaller lysosome release than did thrombin. The results further demonstrate the essential role of external calcium in triggering sustained and full platelet responses, and emphasize the major difference between TRAP and thrombin in mobilizing [Ca2+]j. Thus, apart from the proteolysis of the seven transmembrane receptor, another thrombin binding site or thrombin receptor interaction is required to obtain full and complete responses.


1979 ◽  
Vol 42 (04) ◽  
pp. 1193-1206 ◽  
Author(s):  
Barbara Nunn

SummaryThe hypothesis that platelet ADP is responsible for collagen-induced aggregation has been re-examined. It was found that the concentration of ADP obtaining in human PRP at the onset of aggregation was not sufficient to account for that aggregation. Furthermore, the time-course of collagen-induced release in human PRP was the same as that in sheep PRP where ADP does not cause release. These findings are not consistent with claims that ADP alone perpetuates a collagen-initiated release-aggregation-release sequence. The effects of high doses of collagen, which released 4-5 μM ADP, were not inhibited by 500 pM adenosine, a concentration that greatly reduced the effect of 300 μM ADP. Collagen caused aggregation in ADP-refractory PRP and in platelet suspensions unresponsive to 1 mM ADP. Thus human platelets can aggregate in response to collagen under circumstances in which they cannot respond to ADP. Apyrase inhibited aggregation and ATP release in platelet suspensions but not in human PRP. Evidence is presented that the means currently used to examine the role of ADP in aggregation require investigation.


Sign in / Sign up

Export Citation Format

Share Document