scholarly journals Epigenome Wide Association and Stochastic Epigenetic Mutation Analysis on Cord Blood of Preterm Birth

2020 ◽  
Vol 21 (14) ◽  
pp. 5044
Author(s):  
Elena Spada ◽  
Luciano Calzari ◽  
Luigi Corsaro ◽  
Teresa Fazia ◽  
Monica Mencarelli ◽  
...  

Preterm birth (PTB) can be defined as the endpoint of a complex process that could be influenced by maternal and environmental factors. Epigenetics recently emerged as an interesting field of investigation since it represents an important mechanism of regulation. This study evaluates epigenetic impact of preterm birth on DNA methylation. Genome-wide DNAm was measured using the Illumina 450K array in cord blood samples obtained from 72 full term and 18 preterm newborns. Lymphocyte composition was calculated based on specific epigenetic markers that are present on the 450k array. Differential methylation analysis was performed both at site and region level; moreover, stochastic epigenetic mutations (SEMs) were also evaluated. The study showed significant differences in blood cell composition between the two groups. Moreover, after multiple testing correction, statistically significant differences in DNA methylation levels emerged between the two groups both at site and region levels. Results obtained were compared to those reported by previous EWAS, leading to a list of more consistent genes associated with PTB. Finally, the SEMs analysis revealed that the burden of SEMs resulted significantly higher in the preterm group. In conclusion, PTB resulted associated to specific epigenetic signatures that involve immune system. Moreover, SEMs analysis revealed an increased epigenetic drift at birth in the preterm group.

Epigenetics ◽  
2018 ◽  
Vol 13 (2) ◽  
pp. 163-172 ◽  
Author(s):  
Xiumei Hong ◽  
Ben Sherwood ◽  
Christine Ladd-Acosta ◽  
Shouneng Peng ◽  
Hongkai Ji ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hirotaka Yamagata ◽  
Hiroyuki Ogihara ◽  
Koji Matsuo ◽  
Shusaku Uchida ◽  
Ayumi Kobayashi ◽  
...  

AbstractThe heterogeneity of major depressive disorder (MDD) is attributed to the fact that diagnostic criteria (e.g., DSM-5) are only based on clinical symptoms. The discovery of blood biomarkers has the potential to change the diagnosis of MDD. The purpose of this study was to identify blood biomarkers of DNA methylation by strategically subtyping patients with MDD by onset age. We analyzed genome-wide DNA methylation of patients with adult-onset depression (AOD; age ≥ 50 years, age at depression onset < 50 years; N = 10) and late-onset depression (LOD; age ≥ 50 years, age at depression onset ≥ 50 years; N = 25) in comparison to that of 30 healthy subjects. The methylation profile of the AOD group was not only different from that of the LOD group but also more homogenous. Six identified methylation CpG sites were validated by pyrosequencing and amplicon bisulfite sequencing as potential markers for AOD in a second set of independent patients with AOD and healthy control subjects (N = 11). The combination of three specific methylation markers achieved the highest accuracy (sensitivity, 64%; specificity, 91%; accuracy, 77%). Taken together, our findings suggest that DNA methylation markers are more suitable for AOD than for LOD patients.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Caterina Strisciuglio ◽  
Felicity Payne ◽  
Komal Nayak ◽  
Marialuisa Andreozzi ◽  
Alessandra Vitale ◽  
...  

AbstractEosinophilic esophagitis (EoE) is a leading cause of dysphagia and food impaction in children and adults. The diagnosis relies on histological examination of esophageal mucosal biopsies and requires the presence of > 15 eosinophils per high-powered field. Potential pitfalls include the impact of biopsy sectioning as well as regional variations of eosinophil density. We performed genome-wide DNA methylation analyses on 30 esophageal biopsies obtained from children diagnosed with EoE (n = 7) and matched controls (n = 13) at the time of diagnosis as well as following first-line treatment. Analyses revealed striking disease-associated differences in mucosal DNA methylation profiles in children diagnosed with EoE, highlighting the potential for these epigenetic signatures to be developed into clinically applicable biomarkers.


2018 ◽  
Author(s):  
David M. Howard ◽  
Mark J. Adams ◽  
Toni-Kim Clarke ◽  
Jonathan D. Hafferty ◽  
Jude Gibson ◽  
...  

AbstractMajor depression is a debilitating psychiatric illness that is typically associated with low mood, anhedonia and a range of comorbidities. Depression has a heritable component that has remained difficult to elucidate with current sample sizes due to the polygenic nature of the disorder. To maximise sample size, we meta-analysed data on 807,553 individuals (246,363 cases and 561,190 controls) from the three largest genome-wide association studies of depression. We identified 102 independent variants, 269 genes, and 15 gene-sets associated with depression, including both genes and gene-pathways associated with synaptic structure and neurotransmission. Further evidence of the importance of prefrontal brain regions in depression was provided by an enrichment analysis. In an independent replication sample of 1,306,354 individuals (414,055 cases and 892,299 controls), 87 of the 102 associated variants were significant following multiple testing correction. Based on the putative genes associated with depression this work also highlights several potential drug repositioning opportunities. These findings advance our understanding of the complex genetic architecture of depression and provide several future avenues for understanding aetiology and developing new treatment approaches.


2019 ◽  
Vol 4 (1) ◽  
Author(s):  
Stephanie P Gilley ◽  
Nicholas E Weaver ◽  
Evan L Sticca ◽  
Purevsuren Jambal ◽  
Alexandra Palacios ◽  
...  

ABSTRACT Background Maternal dietary restriction and supplementation of one-carbon (1C) metabolites can impact offspring growth and DNA methylation. However, longitudinal research of 1C metabolite and amino acid (AA) concentrations over the reproductive cycle of human pregnancy is limited. Objective To investigate longitudinal 1C metabolite and AA concentrations prior to and during pregnancy and the effects of a small-quantity lipid-based nutrition supplement (LNS) containing &gt;20 micronutrients and prepregnancy BMI (ppBMI). Methods This study was an ancillary study of the Women First Trial (NCT01883193, clinicaltrials.gov) focused on a subset of Guatemalan women (n = 134), 49% of whom entered pregnancy with a BMI ≥25 kg/m2. Ninety-five women received LNS during pregnancy (+LNS group), while the remainder did not (−LNS group). A subset of women from the Pakistan study site (n = 179) were used as a replication cohort, 124 of whom received LNS. Maternal blood was longitudinally collected on dried blood spot (DBS) cards at preconception, and at 12 and 34 wk gestation. A targeted metabolomics assay was performed on DBS samples at each time point using LC-MS/MS. Longitudinal analyses were performed using linear mixed modeling to investigate the influence of time, LNS, and ppBMI. Results Concentrations of 23 of 27 metabolites, including betaine, choline, and serine, changed from preconception across gestation after application of a Bonferroni multiple testing correction (P &lt; 0.00185). Sixteen of those metabolites showed similar changes in the replication cohort. Asymmetric and symmetric dimethylarginine were decreased by LNS in the participants from Guatemala. Only tyrosine was statistically associated with ppBMI at both study sites. Conclusions Time influenced most 1C metabolite and AA concentrations with a high degree of similarity between the 2 diverse study populations. These patterns were not significantly altered by LNS consumption or ppBMI. Future investigations will focus on 1C metabolite changes associated with infant outcomes, including DNA methylation. This trial was registered at clinicaltrials.gov as NCT01883193.


2016 ◽  
Author(s):  
Patrick De Boever ◽  
Sabine S. Langie ◽  
Matthieu Moisse ◽  
Katarzyna Szarc Vel Szic ◽  
Ellen Van Der Plas ◽  
...  

2020 ◽  
Author(s):  
Young-Ah You ◽  
Eun Jin Kwon ◽  
Han-Sung Hwang ◽  
Suk-Joo Choi ◽  
Sae Kyung Choi ◽  
...  

Abstract Background Preterm birth is associated with an increased risk of neonatal complications and death, as well as poor health and disease later in life. Epigenetics could contribute to the mechanism underlying preterm birth. Results Genome-wide DNA methylation in whole blood cells from ten women was assessed using Illumina Infinium HumanMethylation450 BeadChips array. We identified 6,755 differentially methylated CpG sites between term and preterm birth. Although no differential methylation of these CpGs were found in correcting for multiple tests, seven VTRNA2-1 CpGs in promotor region of island were detected in top different methylation. We performed pyrosequencing validation with blood samples from the pregnant women. The methylation levels of VTRNA2-1 were either low (hypomethylated, 0–12.2%) or high (hypermethylated, 32.6–50.8%). Hypermethylation of VTRNA2-1 was associated with an increased risk of preterm birth after adjusting for maternal age, delivered season, parity and count of white blood cell. The mRNA expression of VTRNA2-1 was 0.51-fold lower in PTB delivered women compared with women with term deliveries. Conclusion This study suggests that change of VTRNA2-1 methylation is related to PTB in maternal blood. Further elucidate to underlay mechanisms of preterm birth and affect to future systems biology studies to predict preterm birth.


2020 ◽  
Author(s):  
Chang Shu ◽  
David W. Sosnowski ◽  
Ran Tao ◽  
Amy Deep-Soboslay ◽  
Joel E. Kleinman ◽  
...  

AbstractOpioid abuse poses significant risk to individuals in the United States and epigenetic changes are a leading potential biomarker of abuse. Current evidence, however, is mostly limited to candidate gene analysis in whole blood. To clarify the association between opioid abuse and DNA methylation, we conducted an epigenome-wide analysis (EWAS) of DNA methylation in brains of individuals who died from opioid intoxication and controls. Tissue samples were extracted from the dorsolateral prefrontal cortex of 160 deceased individuals (Mage = 35.15, SD = 9.42 years; 62% male; 78% White). The samples included 73 individuals who died of opioid intoxication, 59 group-matched psychiatric controls, and 28 group-matched normal controls. EWAS was implemented using the Illumina Infinium MethylationEPIC BeadChip; analyses adjusted for sociodemographic characteristics, negative control and ancestry principal components, cellular composition, and surrogate variables. Epigenetic age was calculated using the Horvath and Levine clocks, and gene ontology (GO) analyses were performed. No CpG sites were epigenome-wide significant after multiple testing correction, but 13 sites reached nominal significance (p < 1.0 x 10-5). There was a significant association between opioid use and Levine phenotypic age (b = 2.24, se = 1.11, p = .045). Opioid users were approximately two years phenotypically older compared to controls. GO analyses revealed enriched pathways related to cell function and neuron differentiation, but no terms survived multiple testing correction. Results inform our understanding of the neurobiology of opioid use, and future research with larger samples across stages of opioid use will elucidate the complex genomics of opioid abuse.


Sign in / Sign up

Export Citation Format

Share Document