scholarly journals Synergistic Interaction of Phytohormones in Determining Leaf Angle in Crops

2020 ◽  
Vol 21 (14) ◽  
pp. 5052
Author(s):  
Xi Li ◽  
Pingfan Wu ◽  
Ying Lu ◽  
Shaoying Guo ◽  
Zhuojun Zhong ◽  
...  

Leaf angle (LA), defined as the angle between the plant stem and leaf adaxial side of the blade, generally shapes the plant architecture into a loosen or dense structure, and thus influences the light interception and competition between neighboring plants in natural settings, ultimately contributing to the crop yield and productivity. It has been elucidated that brassinosteroid (BR) plays a dominant role in determining LA, and other phytohormones also positively or negatively participate in regulating LA. Accumulating evidences have revealed that these phytohormones interact with each other in modulating various biological processes. However, the comprehensive discussion of how the phytohormones and their interaction involved in shaping LA is relatively lack. Here, we intend to summarize the advances in the LA regulation mediated by the phytohormones and their crosstalk in different plant species, mainly in rice and maize, hopefully providing further insights into the genetic manipulation of LA trait in crop breeding and improvement in regarding to overcoming the challenge from the continuous demands for food under limited arable land area.

2020 ◽  
Vol 21 (6) ◽  
pp. 2090 ◽  
Author(s):  
Hyoseob Seo ◽  
Suk-Hwan Kim ◽  
Byoung-Doo Lee ◽  
Jung-Hyun Lim ◽  
Sang-Ji Lee ◽  
...  

Changes in plant architecture, such as leaf size, leaf shape, leaf angle, plant height, and floral organs, have been major factors in improving the yield of cereal crops. Moreover, changes in grain size and weight can also increase yield. Therefore, screens for additional factors affecting plant architecture and grain morphology may enable additional improvements in yield. Among the basic Helix-Loop-Helix (bHLH) transcription factors in rice (Oryza sativa), we found an enhancer-trap T-DNA insertion mutant of OsbHLH079 (termed osbhlh079-D). The osbhlh079-D mutant showed a wide leaf angle phenotype and produced long grains, similar to the phenotypes of mutants with increased brassinosteroid (BR) levels or enhanced BR signaling. Reverse transcription-quantitative PCR analysis showed that BR signaling-associated genes are largely upregulated in osbhlh079-D, but BR biosynthesis-associated genes are not upregulated, compared with its parental japonica cultivar ‘Dongjin’. Consistent with this, osbhlh079-D was hypersensitive to BR treatment. Scanning electron microscopy revealed that the expansion of cell size in the adaxial side of the lamina joint was responsible for the increase in leaf angle in osbhlh079-D. The expression of cell-elongation-associated genes encoding expansins and xyloglucan endotransglycosylases/hydrolases increased in the lamina joints of leaves in osbhlh079-D. The regulatory function of OsbHLH079 was further confirmed by analyzing 35S::OsbHLH079 overexpression and 35S::RNAi-OsbHLH079 gene silencing lines. The 35S::OsbHLH079 plants showed similar phenotypes to osbhlh079-D, and the 35S::RNAi-OsbHLH079 plants displayed opposite phenotypes to osbhlh079-D. Taking these observations together, we propose that OsbHLH079 functions as a positive regulator of BR signaling in rice.


2019 ◽  
Author(s):  
Elham Ahmadzadeh ◽  
N. Sumru Bayin ◽  
Xinli Qu ◽  
Aditi Singh ◽  
Linda Madisen ◽  
...  

AbstractThanks to many advances in genetic manipulation, mouse models have become very powerful in their ability to interrogate biological processes. In order to precisely target expression of a gene of interest to particular cell types, intersectional genetic approaches utilizing two promoter/enhancers unique to a cell type are ideal. Within these methodologies, variants that add temporal control of gene expression are the most powerful. We describe the development, validation and application of an intersectional approach that involves three transgenes, requiring the intersection of two promoter/enhancers to target gene expression to precise cell types. Furthermore, the approach utilizes available lines expressing tTA/rTA to control timing of gene expression based on whether doxycycline is absent or present, respectively. We also show that the approach can be extended to other animal models, using chicken embryos. We generated three mouse lines targeted at the Tigre (Igs7) locus with TRE-loxP-tdTomato-loxP upstream of three genes (p21, DTA and Ctgf) and combined them with Cre and tTA/rtTA lines that target expression to the cerebellum and limbs. Our tools will facilitate unraveling biological questions in multiple fields and organisms.Summary statementAhmadzadeh et al. present a collection of four mouse lines and genetic tools for misexpression-mediated manipulation of cellular activity with high spatiotemporal control, in a reversible manner.


Author(s):  
Noel J. Buckley ◽  
George K. Tofaris

Neurodegenerative diseases (NDDs) and dementia are the greatest disease burdens of our time, carrying an enormous personal, societal, and economic burden. Although NDDs are often thought of as individual entities in their clinical presentation, there is increasing evidence of considerable overlap of their aetiology and pathogenesis. This has led to the discovery of overlapping biological processes underlying disease mechanisms, including protein misfolding, endoplasmic reticulum stress, cellular transport, mitochondrial dysfunction, and inflammation. These biological processes ultimately result in neuronal death and attendant disease symptomology, but pathogenesis of NDDs is orchestrated by an intimate interaction of both neuronal and non-neuronal cells. We are now moving into an era where we have new human cellular models, novel genetic manipulation tools, and high-throughput single-cell analysis techniques that allow interrogation of this commonality and complexity, married to an aspiration to develop novel therapeutic strategies to delay, slow, or reverse neurodegeneration. This chapter provides a brief summary of these evolving ideas.


2020 ◽  
Author(s):  
Dandan Dou ◽  
Shengbo Han ◽  
Lixia Ku ◽  
Huafeng Liu ◽  
Huihui Su ◽  
...  

AbstractLeaf angle in cereals is an important agronomic trait contributing to plant architecture and grain yield by determining the plant compactness. Although ZmCLA4 was identified to shape plant architecture by affecting leaf angle, the detailed regulatory mechanism of ZmCLA4 in maize remains unclear. ZmCLA4 was identified as a transcriptional repressor using the Gal4-LexA/UAS system and transactivation analysis in yeast. The DNA affinity purification (DAP)-seq assay showed that ZmCLA4 not only acts as a repressor containing the EAR motif (CACCGGAC), but was also found to have two new motifs, CCGARGS and CDTCNTC. On analyzing the ZmCLA4-bound targeted genes, we found that ZmCLA4, as a cross node of multiple plant hormone-mediated pathways, directly bound to ARF22 and IAA26 to regulate auxin transport and mediated brassinosteroid signaling by directly binding to BZR3 and 14-3-3. ZmCLA4 bound two WRKY genes involved with abscisic acid, two genes (CYP75B1, CYP93D1) involved with jasmonic acid, B3 involved in the response to ethylene, and thereby negatively regulated leaf angle formation. We built a new regulatory network for the ZmCLA4 gene controlling leaf angle in maize, which contributed to the understanding of ZmCLA4’s regulatory mechanism and will improve grain yields by facilitating optimization of plant architecture.


BMC Genetics ◽  
2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Huijun Guo ◽  
Hongchun Xiong ◽  
Yongdun Xie ◽  
Linshu Zhao ◽  
Jiayu Gu ◽  
...  

Abstract Background Wheat mutant resources with phenotypic variation have been developed in recent years. These mutants might carry favorable mutation alleles, which have the potential to be utilized in the breeding process. Plant architecture and yield-related features are important agronomic traits for wheat breeders and mining favorable alleles of these traits will improve wheat characteristics. Results Here we used 190 wheat phenotypic mutants as material and by analyzing their SNP variation and phenotypic data, mutation alleles for plant architecture and yield-related traits were identified, and the genetic effects of these alleles were evaluated. In total, 32 mutation alleles, including three pleiotropic alleles, significantly associated with agronomic traits were identified from the 190 wheat mutant lines. The SNPs were distributed on 12 chromosomes and were associated with plant height (PH), tiller number, flag leaf angle (FLA), thousand grain weight (TGW), and other yield-related traits. Further phenotypic analysis of multiple lines carrying the same mutant allele was performed to determine the effect of the allele on the traits of interest. PH-associated SNPs on chromosomes 2BL, 3BS, 3DL, and 5DL might show additive effects, reducing PH by 10.0 cm to 31.3 cm compared with wild type, which means that these alleles may be favorable for wheat improvement. Only unfavorable mutation alleles that reduced TGW and tiller number were identified. A region on chromosome 5DL with mutation alleles for PH and TGW contained several long ncRNAs, and their sequences shared more than 90% identity with cytokinin oxidase/dehydrogenase genes. Some of the mutation alleles we mined were colocalized with previously reported QTLs or genes while others were novel; these novel alleles could also result in phenotypic variation. Conclusion Our results demonstrate that favorable mutation alleles are present in mutant resources, and the region between 409.5 to 419.8 Mb on chromosome 5DL affects wheat plant height and thousand grain weight.


2018 ◽  
Vol 2018 ◽  
pp. 1-18 ◽  
Author(s):  
Derek Cui Xu ◽  
Lewis Arthurton ◽  
Luis Alberto Baena-Lopez

The ease of genetic manipulation, as well as the evolutionary conservation of gene function, has placedDrosophila melanogasteras one of the leading model organisms used to understand the implication of many proteins with disease development, including caspases and their relation to cancer. The family of proteases referred to as caspases have been studied over the years as the major regulators of apoptosis: the most common cellular mechanism involved in eliminating unwanted or defective cells, such as cancerous cells. Indeed, the evasion of the apoptotic programme resulting from caspase downregulation is considered one of the hallmarks of cancer. Recent investigations have also shown an instrumental role for caspases in non-lethal biological processes, such as cell proliferation, cell differentiation, intercellular communication, and cell migration. Importantly, malfunction of these essential biological tasks can deeply impact the initiation and progression of cancer. Here, we provide an extensive review of the literature surrounding caspase biology and its interplay with many aspects of cancer, emphasising some of the key findings obtained fromDrosophilastudies. We also briefly describe the therapeutic potential of caspase modulation in relation to cancer, highlighting shortcomings and hopeful promises.


PLoS ONE ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. e0245129
Author(s):  
Ning Zhang ◽  
Xueqing Huang

Leaf angle of maize is a fundamental determinant of plant architecture and an important trait influencing photosynthetic efficiency and crop yields. To broaden our understanding of the genetic mechanisms of leaf angle formation, we constructed a F3:4 recombinant inbred lines (RIL) population to map QTL for leaf angle. The RIL was derived from a cross between a model inbred line (B73) with expanded leaf architecture and an elite inbred line (Zheng58) with compact leaf architecture. A sum of eight QTL were detected on chromosome 1, 2, 3, 4 and 8. Single QTL explained 4.3 to 14.2% of the leaf angle variance. Additionally, some important QTL were confirmed through a heterogeneous inbred family (HIF) approach. Furthermore, twenty-four candidate genes for leaf angle were predicted through whole-genome re-sequencing and expression analysis in qLA02-01and qLA08-01 regions. These results will be helpful to elucidate the genetic mechanism of leaf angle formation in maize and benefit to clone the favorable allele for leaf angle. Besides, this will be helpful to develop the novel maize varieties with ideal plant architecture through marker-assisted selection.


2016 ◽  
Vol 80 (3) ◽  
pp. 765-777 ◽  
Author(s):  
Carlos Gancedo ◽  
Carmen-Lisset Flores ◽  
Juana M. Gancedo

SUMMARYMoonlighting proteins are multifunctional proteins that participate in unrelated biological processes and that are not the result of gene fusion. A certain number of these proteins have been characterized in yeasts, and the easy genetic manipulation of these microorganisms has been useful for a thorough analysis of some cases of moonlighting. As the awareness of the moonlighting phenomenon has increased, a growing number of these proteins are being uncovered. In this review, we present a crop of newly identified moonlighting proteins from yeasts and discuss the experimental evidence that qualifies them to be classified as such. The variety of moonlighting functions encompassed by the proteins considered extends from control of transcription to DNA repair or binding to plasminogen. We also discuss several questions pertaining to the moonlighting condition in general. The cases presented show that yeasts are important organisms to be used as tools to understand different aspects of moonlighting proteins.


2016 ◽  
Vol 9 (1) ◽  
pp. 12-21 ◽  
Author(s):  
Adriana E. Martinez ◽  
Patricia F. McDowell

AbstractIn instances where vegetation plays a dominant role in the riparian landscape, the type and characteristics of species, particularly a dominant invasive, can alter water velocity at high flows when vegetation is inundated. However, quantifying this resistance in terms of riparian vegetation has largely been ignored or listed as a secondary characteristic on roughness reference tables. We calculated vegetation roughness based on measurements of plant stem stiffness, plant frontal area, stem density, and stem area of three dominant herbaceous plants along the Sprague River, Oregon: the invasive reed canarygrass, native creeping spikerush, and native inflated sedge. Results show slightly lower roughness values than those predicted for vegetation using reference tables. In addition, native creeping spikerush and invasive reed canarygrass exhibit higher roughness values than native inflated sedge, which exhibits values lower than the other two species. These findings are of particular importance where the invasive reed canarygrass is outcompeting native inflated sedge, because with invasive colonization, roughness is increasing in channel zones and therefore is likely changing channel processes. Direct depositional measurements show similar results.


Author(s):  
Sina Mohammadi Aghdam ◽  
Babak Abdollahi Mandoulakani ◽  
Laura Rossini ◽  
Agnieszka Janiak ◽  
Salar Shaaf

AbstractIn grasses, biomass and grain production are affected by plant architecture traits such as tiller number, leaf size and orientation. Thus, knowledge regarding their genetic basis is a prerequisite for developing new improved varieties. Mutant screens represent a powerful approach to identify genetic factors underpinning these traits: the HorTILLUS population, obtained by mutagenesis of spring two-row cultivar Sebastian, is a valuable resource for this purpose in barley. In this study, 20 mutant families from the HorTILLUS population were selected and evaluated for tiller number, leaf angle and a range of other plant architecture and agronomic traits using an unreplicated field design with Sebastian as a check cultivar. Principal Component Analysis revealed strong relationships among number of tillers, upper canopy leaf angle, biomass and yield-related traits. Comparison to the Sebastian background revealed that most mutants significantly differed from the wild-type for multiple traits, including two mutants with more erect leaves and four mutants with increased tiller number in at least one phenological stage. Heatmap clustering identified two main groups: the first containing the two erect mutants and the second containing Sebastian and the high-tillering mutants. Among the high-tillering mutants, two showed significantly higher biomass and grain yield per plant compared to Sebastian. The selected mutants represent promising materials for the identification of genetic factors controlling tillering and leaf angle in barley.


Sign in / Sign up

Export Citation Format

Share Document