scholarly journals Contact/Release Coordinated Antibacterial Cotton Fabrics Coated with N-Halamine and Cationic Antibacterial Agent for Durable Bacteria-Killing Application

2020 ◽  
Vol 21 (18) ◽  
pp. 6531 ◽  
Author(s):  
Hua Han ◽  
Chang Liu ◽  
Jie Zhu ◽  
Fa-Xue Li ◽  
Xue-Li Wang ◽  
...  

Coating a cationic antibacterial layer on the surface of cotton fabric is an effective strategy to provide it with excellent antibacterial properties and to protect humans from bacterial cross-infection. However, washing with anionic detergent will inactivate the cationic antibacterial coating. Although this problem can be solved by increasing the amount of cationic antibacterial coating, excessive cationic antibacterial coating reduces the drapability of cotton fabric and affects the comfort of wearing it. In this study, a coordinated antibacterial coating strategy based on quaternary ammonium salt and a halogenated amine compound was designed. The results show that the antibacterial effect of the modified cotton fabric was significantly improved. In addition, after mechanically washing the fabric 50 times in the presence of anionic detergent, the antibacterial effect against Staphylococcus aureus and Escherichia coli was still more than 95%. Furthermore, the softness of the obtained cotton fabric showed little change compared with the untreated cotton fabric. This easy-to-implement and cost-effective approach, combined with the cationic contact and the release effect of antibacterial agents, can endow cotton textiles with durable antibacterial properties and excellent wearability.

Cellulose ◽  
2021 ◽  
Author(s):  
Peixin Tang ◽  
Leilah-Marie E. Lockett ◽  
Mengxiao Zhang ◽  
Gang Sun

AbstractA chemical modification of cotton fabrics by 2-diethylaminoethyl chloride (DEAE-Cl) was achieved, and the resulted cotton fabrics demonstrated salt-free dyeing properties with anionic dyes. Nucleophilic property of hydroxyl groups in cotton cellulose was enhanced under alkaline conditions and could react with DEAE-Cl, a chemical possessing both nucleophilic and electrophilic sites. The monolayered DEAE-grafted cotton cellulose could further react with DEAE-Cl to form multiple cationic quaternary ammonium salts (denoted as DEAE@Cotton), which are highly interactive with anionic dye molecules. The strong electrostatic interactions between the DEAE@Cotton and the dyes eliminated the use of inorganic salts in cotton dyeing process. The chemical structure and property of DEAE@Cotton were characterized and compared with untreated cotton. The DEAE@Cotton can be dyed in a salt-free system, and the dye exhaustion was faster than the conventional dyeing method due to the robust electrostatic interactions of the fabrics with anionic dyes. The dyed fabrics demonstrated outstanding color fastness under repeated washing, light exposure, and crocking. The dye adsorption process on DEAE@Cotton follows Langmuir isotherm model (R2 = 0.9667). The mechanism of enhanced dyeability was experimentally proved by treating the fabric with other anionic dyes in a salt-free system, proving the process to be environmentally friendly and cost-effective. Graphic abstract


2021 ◽  
Vol 16 ◽  
pp. 155892502110034
Author(s):  
Xiongfang Luo ◽  
Pei Cheng ◽  
Wencong Wang ◽  
Jiajia Fu ◽  
Weidong Gao

This study establishes an eco-friendly anti-wrinkle treating process for cotton fabric. Sodium hydroxide-liquid ammonia pretreatment followed by 6% (w/w) PU100 adding citric acid pad-cure-dry finishing. In this process, citric acid (CA) was used as the fundamental crosslinking agent during finishing because it is a non-formaldehyde based, cost-effective and well wrinkle resistance agent. Environmental-friendly waterborne polyurethane (WPU) was used as an additive to add to the CA finishing solution. Six commercial WPUs were systematically investigated. Fabric properties like wrinkle resistance, tensile strength retention, whiteness, durable press, softness, and wettability were well investigated. Fourier transform infrared spectra and X-ray diffraction spectra were also measured and discussed before and after adding waterborne polyurethane. Tentative mechanism of the interaction among the WPU, CA, and modified cotton fabrics is provided. The effect of cotton fabric pretreatment on fabric performance was also investigated. After the eco-process’s treatment, the fabric wrinkle resistant angle was upgraded to 271 ± 7°, tensile strength retention was maintained at 66.77% ± 3.50% and CIE whiteness was elevated to 52.13 ± 3.21, which are much better than the traditional CA anti-wrinkle finishing based on mercerized cotton fabrics. This study provides useful information for textile researchers and engineers.


2011 ◽  
Vol 332-334 ◽  
pp. 77-80 ◽  
Author(s):  
Chuan Jie Zhang ◽  
Hong Yang ◽  
Yun Liu ◽  
Ping Zhu

Cotton fabric with excellent antibacterial properties was obtained by treated with polyamide-amine (PAMAM) dendrimers as a carrier and silver nitrate as an antibacterial agent. The antibacterial cotton fabrics were prepared by the methods of one-bath process and two-bath process. Antibacterial activity of cotton fabrics treated by two different methods was good, but the antibacterial durability of cotton fabric treated with two-bath process was better than that treated with one-bath process. After 50 washing cycles, cotton fabric treated with two-bath process still had good antibacterial property and its inhibitory rate to Gram-positive S. aureus and Gram-negative E. coli was over 99 %. It was found that the breaking strength retention of finished cotton fabrics was 85.83 % and the decrease of cotton fabrics’ whiteness index was about 15 %.


2016 ◽  
Vol 87 (11) ◽  
pp. 1367-1376 ◽  
Author(s):  
Chaohong Dong ◽  
Zhou Lu ◽  
Peng Wang ◽  
Ping Zhu ◽  
Xuechao Li ◽  
...  

A novel formaldehyde-free flame retardant containing phosphorus and dichlorotriazine components (CTAP) for cotton fabrics was synthesized. As an active group, the dichlorotriazine could react with cotton fabric via covalent reaction. The addition of 20.7 wt% CTAP into the cotton fabric obtained a high limiting oxygen index value of 31.5%, which was 13.5% higher than the pure cotton fabric. The results of heat release rate, total heat release and effective heat combustion indicated that CTAP effectively imparted flame retardancy to cotton fabric by the cone calorimetry test. With respect to the untreated cotton fabrics, the treated cotton fabrics degraded at lower decomposition temperature and form a consistent and compact char layer, which could be observed by thermogravimetric analysis, Fourier transform infrared spectroscopy and scanning electron microscopy. Compared to the untreated cotton fabrics, CTAP performed an effective role in flame retardancy for treated cotton fabrics. Meanwhile, it stimulated the formation of char and promoted the thermal stability of treated cotton fabrics during combustion.


1992 ◽  
Vol 62 (9) ◽  
pp. 547-551 ◽  
Author(s):  
Tsang-Yuh Liang ◽  
Jenn-Yann Hwang ◽  
Der-Shiann Ju ◽  
Cheng-Chi Chen

Adsorption time curves from finite baths have been studied for untreated cotton fabric and cottons treated with differing molecular chain lengths of aldehydes (formaldehyde and glutaraldehyde). Crosslinking reduced the rate constant, structural diffusion resistance constant, and equilibrium adsorption of dyeing. Additionally, these data decreased with increasing agent concentration and with increasing molecular chain length of the crosslinking agent. The dyeing activation energy of the glutaraldehyde treated fabric was lower than that of the formaldehyde treated fabric.


Materials ◽  
2019 ◽  
Vol 12 (12) ◽  
pp. 2010 ◽  
Author(s):  
Guangyu Zhang ◽  
Dao Wang ◽  
Jiawei Yan ◽  
Yao Xiao ◽  
Wenyan Gu ◽  
...  

Herein, the amino-capped TiO2 nanoparticles were synthesized using tetrabutyl titanate and amino polymers by a two-step sol-gel and hydrothermal method technique for the fabrication of functional cotton fabric. The prepared TiO2 nanoparticles and the treated cotton fabric were characterized by transmission electron microscope (TEM), X-ray diffraction (XRD), field emission scanning electron microcopy (FE-SEM) photocatalytic and antibacterial measurement. The results indicate the typical characteristic anatase form of the amino-capped TiO2 NPs with an average crystallite size of 14.9 nm. The treated cotton fabrics exhibit excellent antibacterial property and good photocatalytic degradation of methylene blue.


RSC Advances ◽  
2017 ◽  
Vol 7 (31) ◽  
pp. 18838-18843 ◽  
Author(s):  
Dan Yu ◽  
Lijin Xu ◽  
Yi Hu ◽  
Yani Li ◽  
Wei Wang

This research proposes a method based on thiol–epoxy click chemistry to achieve durable antibacterial properties on cotton fabrics.


1977 ◽  
Vol 47 (5) ◽  
pp. 351-360 ◽  
Author(s):  
Stanley R. Hobart ◽  
Charles H. Mack

Transfer of flame retardancy from fabric treated with THPOH-NH3 to untreated cotton fabric during burning was observed on fabric samples sewed together with glass thread. The transfer effect was evidenced by the development of substantial char and the presence of phosphorus and nitrogen in the char of the untreated fabric. Oxygen-index determinations on multilayered combinations of flame-retarded (FR) and untreated fabrics also supported this observation. The extent of FR transfer varied with the geometrical configuration of the layers and the FR add-on. Tests showed that smoke from combustion of THPOH-NH3-treated fabric, passed through untreated cotton fabric, was the means of transfer of phosphorus, nitrogen, and flame retardancy. The FR transfer effect was also demonstrated for several other phosphorus-containing flame-retardancy treatments.


2015 ◽  
Vol 10 (2) ◽  
pp. 155892501501000
Author(s):  
Chaohong Dong ◽  
Zhou Lu ◽  
Ping Zhu ◽  
Lei Wang ◽  
Fengjun Zhang

A novel poly(4-iodobutoxylmethylsiloxane) (PIBMS) water repellent with high reaction activity was synthesized using poly(hydromethylsiloxane) (PHMS), methyl iodide (MeI) and tetrahydrofuran (THF) in the presence of a catalytic amount of PdCl2. The new chemical active group of PIBMS could covalently bond to the cotton fabric. It is conducive to improve the washability of treated cotton fabric. The structure of PIBMS was confirmed by the FT-IR and 1H NMR spectra. The PIBMS was applied onto cotton fabric by a pad-dry-cure process. PIBMS was applied to cotton fabrics and the effect of the process parameters on water repellent performance was studied. The morphology of PIBMS polymer film on the cotton fabric was investigated by SEM. The water repellency of treated cotton fabrics before and after vigorous washes was compared. The results show that the water repellent grade of cotton fabric treated with PIBMS was 90. The contact angle of the treated cotton fabric was 136.94°, which was higher than that of the untreated cotton fabric. The water repellent grade of treated cotton fabric was still as high as 80 after 20 times washing. The tear strength and the tensile strength of cotton fabric significantly increased after PIBMS treatment. The air permeability and the water vapor permeability of treated cotton fabric were slightly lower than those of untreated cotton fabrics.


2020 ◽  
Vol 10 (2) ◽  
pp. 5296-5300

An inorganic flame retardant glass was prepared using the melt methods. The prepared glass was characterized using IR, X-ray. The x-ray patterns and IR charts show that the formation of glass without any crystals. Cotton fabric was finished using different percentage of glass 0.5, 1, 1.5 and 2 % (w/w) in the presence of citric acid as crosslinker and sodium hypophosphite as catalyst. The flame retardancy of finished cotton fabric was performed using Limited Oxygen Index (LOI) technique. The results of measurements show that the value of LOI of untreated cotton fabric equals 19.6, when cotton fabrics treated with different amounts of glass ranging from 0.5 to 2 %, the value of LOI increased to become 23.6 at 0.5% and 24.8 for the higher glass concentration. The effect of curing temperature and time on the properties and the LOI of cotton fabric was studied.


Sign in / Sign up

Export Citation Format

Share Document