scholarly journals Epigenetic Regulators Involved in Osteoclast Differentiation

2020 ◽  
Vol 21 (19) ◽  
pp. 7080
Author(s):  
Kristina Astleford ◽  
Emily Campbell ◽  
Andrew Norton ◽  
Kim C. Mansky

Age related changes to the skeleton, such as osteoporosis, increase the risk of fracture and morbidity in the elderly population. In osteoporosis, bone remodeling becomes unbalanced with an increase in bone resorption and a decrease in bone formation. Osteoclasts are large multinucleated cells that secrete acid and proteases to degrade and resorb bone. Understanding the molecular mechanisms that regulate osteoclast differentiation and activity will provide insight as to how hyper-active osteoclasts lead to pathological bone loss, contributing to diseases such as osteoporosis. Reversible modifications to the DNA such as histone acetylation, methylation, phosphorylation and ubiquitylation alters the access of transcriptional machinery to DNA and regulates gene expression and osteoclast differentiation and activity. It is critical for the management of bone related diseases to understand the role of these chromatin modifying proteins during osteoclast differentiation, as potential therapies targeting these proteins are currently under development.

Blood ◽  
1988 ◽  
Vol 71 (6) ◽  
pp. 1726-1730
Author(s):  
KA Melez ◽  
LF Fries ◽  
BS Bender ◽  
T Quinn ◽  
MM Frank

Decreased immune functions have been suggested as a cause for the increased incidence of autoimmunity, malignancy, and infection in the elderly population. To assess the possible role of changes in macrophage function in the aging process we studied the Fc receptor- mediated clearance of IgG-coated erythrocytes in 56 healthy normal volunteers by following the removal of radiolabeled autologous erythrocytes. An age-related decrease in Fc-mediated clearance rates in both female and male subjects was found, which suggests a physiological decline of this macrophage function in older individuals.


2020 ◽  
Vol 126 (4) ◽  
pp. 533-551 ◽  
Author(s):  
Haobo Li ◽  
Margaret H. Hastings ◽  
James Rhee ◽  
Lena E. Trager ◽  
Jason D. Roh ◽  
...  

During aging, deterioration in cardiac structure and function leads to increased susceptibility to heart failure. The need for interventions to combat this age-related cardiac decline is becoming increasingly urgent as the elderly population continues to grow. Our understanding of cardiac aging, and aging in general, is limited. However, recent studies of age-related decline and its prevention through interventions like exercise have revealed novel pathological and cardioprotective pathways. In this review, we summarize recent findings concerning the molecular mechanisms of age-related heart failure and highlight exercise as a valuable experimental platform for the discovery of much-needed novel therapeutic targets in this chronic disease.


Haematologica ◽  
2021 ◽  
Author(s):  
Amanda Amoah ◽  
Anja Keller ◽  
Ramiz Emini ◽  
Markus Hoenicka ◽  
Andreas Liebold ◽  
...  

In this study, we characterize age-related phenotypes of human hematopoietic stem cells (HSCs). We report increased frequencies of HSC, HPC and lineage negative cells in the elderly but a decreased frequency of multi-lymphoid progenitors. Aged human HSCs further exhibited a delay in initiating division ex vivo though without changes in their division kinetics. The activity of the small RhoGTPase Cdc42 was elevated in aged human hematopoietic cells and we identified a positive correlation between Cdc42 activity and the frequency of HSCs upon aging. The frequency of human HSCs polar for polarity proteins was, similar to the mouse, decreased upon aging, while inhibition of Cdc42 activity via the specific pharmacological inhibitor of Cdc42 activity, CASIN, resulted in re-polarisation of aged human HSCs with respect to Cdc42. Elevated activity of Cdc42 in aged HSCs thus contributed to age-related changes in HSCs. Xeno-transplants, using NBSGW mice as recipients, showed elevated chimerism in recipients of aged compared to young HSCs. Aged HSCs treated with CASIN ex vivo displayed an engraftment profile similar to recipients of young HSCs. Taken together, our work reveals strong evidence for a role of elevated Cdc42 activity in driving aging of human HSCs, and similar to mice, this presents a likely possibility for attenuation of aging in human HSCs.


Author(s):  
Silvia Migliaccio ◽  
Emanuela A. Greco ◽  
Antonio Aversa ◽  
Andrea Lenzi

AbstractAged individuals continue to increase in number, and it is important to understand the pathophysiological mechanisms of age-related changes in order to develop interventions that could contribute to “successful aging”. Metabolic and hormonal factors, age-related changes in body composition, and a decline in physical activity are all involved in the tendency to lose muscle mass, to gain fat mass, and, also, to experience bone loss. Obesity, sarcopenia, and osteoporosis are important widespread health problems that lead to high prevalence of both mortality and morbidity. Indeed, during the last decades, obesity and osteoporosis have become a major health threat around the world. Aging increases the risk of developing obesity, sarcopenia, osteoporosis, and, also, cardiovascular diseases. A reduction of both bone and muscle mass with a corresponding increase of fat mass and inflammation and hormonal imbalance in the elderly lead to and may synergistically increase cardiovascular diseases. This review will focus on the relationship among these different medical situations, trying to clarify the cellular and molecular mechanisms.


2020 ◽  
Vol 5 (5) ◽  
pp. 1166-1174
Author(s):  
Sherri M. Jones

Purpose Aging is ubiquitous and the elderly population (aged 65 years and older) will continue to grow, reaching an estimated 25% of the U.S. population by 2060. Symptoms of dizziness and imbalance as well as risk of falling are more common in older adults, but it is often unclear whether these symptoms are due to disease or a consequence of aging. Indeed, age-related changes in the vestibular periphery are not well understood. This invited review describes age-related changes in peripheral vestibular function, comparisons between aging of auditory and vestibular function, structural correlates for vestibular aging, and the role of genetics in vestibular aging. Conclusion The data from animal models will show that gravity receptor function declines with age but at different rates for different inbred mouse strains. Gravity receptor aging includes loss of postsynaptic elements and loss of hair cells, which is observed at advanced ages. Loss of hair cells may contribute to some extent at advanced ages. Age-related changes in hearing do not predict age-related changes in vestibular function. Genes likely influence the rate of decline in vestibular function. Further research is needed to fully understand the fundamental mechanisms of vestibular aging and to begin to develop potential therapeutic approaches.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Huayue Chen ◽  
Xiangrong Zhou ◽  
Hiroshi Fujita ◽  
Minoru Onozuka ◽  
Kin-Ya Kubo

The elderly population has substantially increased worldwide. Aging is a complex process, and the effects of aging are myriad and insidious, leading to progressive deterioration of various organs, including the skeleton. Age-related bone loss and resultant osteoporosis in the elderly population increase the risk for fractures and morbidity. Osteoporosis is one of the most common conditions associated with aging, and age is an independent risk factor for osteoporotic fractures. With the development of noninvasive imaging techniques such as computed tomography (CT), micro-CT, and high resolution peripheral quantitative CT (HR-pQCT), imaging of the bone architecture provides important information about age-related changes in bone microstructure and estimates of bone strength. In the past two decades, studies of human specimens using imaging techniques have revealed decreased bone strength in older adults compared with younger adults. The present paper addresses recently studied age-related changes in trabecular and cortical bone microstructure based primarily on HR-pQCT and micro-CT. We specifically focus on the three-dimensional microstructure of the vertebrae, femoral neck, and distal radius, which are common osteoporotic fracture sites.


Blood ◽  
1988 ◽  
Vol 71 (6) ◽  
pp. 1726-1730 ◽  
Author(s):  
KA Melez ◽  
LF Fries ◽  
BS Bender ◽  
T Quinn ◽  
MM Frank

Abstract Decreased immune functions have been suggested as a cause for the increased incidence of autoimmunity, malignancy, and infection in the elderly population. To assess the possible role of changes in macrophage function in the aging process we studied the Fc receptor- mediated clearance of IgG-coated erythrocytes in 56 healthy normal volunteers by following the removal of radiolabeled autologous erythrocytes. An age-related decrease in Fc-mediated clearance rates in both female and male subjects was found, which suggests a physiological decline of this macrophage function in older individuals.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Muhammad Khan ◽  
Ketan Agarwal ◽  
Mohamed Loutfi ◽  
Ahmed Kamal

Age-related macular degeneration (AMD) is the most common cause of blindness in the elderly population worldwide and is defined as a chronic, progressive disorder characterized by changes occurring within the macula reflective of the ageing process. At present, the prevalence of AMD is currently rising and is estimated to increase by a third by 2020. Although our understanding of the several components underpinning the pathogenesis of this condition has increased significantly, the treatment options for this condition remain substantially limited. In this review, we outline the existing arsenal of therapies available for AMD and discuss the additional role of further novel therapies currently under investigation for this debilitating disease.


Sign in / Sign up

Export Citation Format

Share Document