Insomnia in the elderly: the role of age-related changes in sleep homeostasis

2015 ◽  
Vol 16 (1) ◽  
pp. 3-4 ◽  
Author(s):  
Walter A.S. Moraes
Haematologica ◽  
2021 ◽  
Author(s):  
Amanda Amoah ◽  
Anja Keller ◽  
Ramiz Emini ◽  
Markus Hoenicka ◽  
Andreas Liebold ◽  
...  

In this study, we characterize age-related phenotypes of human hematopoietic stem cells (HSCs). We report increased frequencies of HSC, HPC and lineage negative cells in the elderly but a decreased frequency of multi-lymphoid progenitors. Aged human HSCs further exhibited a delay in initiating division ex vivo though without changes in their division kinetics. The activity of the small RhoGTPase Cdc42 was elevated in aged human hematopoietic cells and we identified a positive correlation between Cdc42 activity and the frequency of HSCs upon aging. The frequency of human HSCs polar for polarity proteins was, similar to the mouse, decreased upon aging, while inhibition of Cdc42 activity via the specific pharmacological inhibitor of Cdc42 activity, CASIN, resulted in re-polarisation of aged human HSCs with respect to Cdc42. Elevated activity of Cdc42 in aged HSCs thus contributed to age-related changes in HSCs. Xeno-transplants, using NBSGW mice as recipients, showed elevated chimerism in recipients of aged compared to young HSCs. Aged HSCs treated with CASIN ex vivo displayed an engraftment profile similar to recipients of young HSCs. Taken together, our work reveals strong evidence for a role of elevated Cdc42 activity in driving aging of human HSCs, and similar to mice, this presents a likely possibility for attenuation of aging in human HSCs.


2020 ◽  
Vol 5 (5) ◽  
pp. 1166-1174
Author(s):  
Sherri M. Jones

Purpose Aging is ubiquitous and the elderly population (aged 65 years and older) will continue to grow, reaching an estimated 25% of the U.S. population by 2060. Symptoms of dizziness and imbalance as well as risk of falling are more common in older adults, but it is often unclear whether these symptoms are due to disease or a consequence of aging. Indeed, age-related changes in the vestibular periphery are not well understood. This invited review describes age-related changes in peripheral vestibular function, comparisons between aging of auditory and vestibular function, structural correlates for vestibular aging, and the role of genetics in vestibular aging. Conclusion The data from animal models will show that gravity receptor function declines with age but at different rates for different inbred mouse strains. Gravity receptor aging includes loss of postsynaptic elements and loss of hair cells, which is observed at advanced ages. Loss of hair cells may contribute to some extent at advanced ages. Age-related changes in hearing do not predict age-related changes in vestibular function. Genes likely influence the rate of decline in vestibular function. Further research is needed to fully understand the fundamental mechanisms of vestibular aging and to begin to develop potential therapeutic approaches.


2020 ◽  
Vol 21 (19) ◽  
pp. 7080
Author(s):  
Kristina Astleford ◽  
Emily Campbell ◽  
Andrew Norton ◽  
Kim C. Mansky

Age related changes to the skeleton, such as osteoporosis, increase the risk of fracture and morbidity in the elderly population. In osteoporosis, bone remodeling becomes unbalanced with an increase in bone resorption and a decrease in bone formation. Osteoclasts are large multinucleated cells that secrete acid and proteases to degrade and resorb bone. Understanding the molecular mechanisms that regulate osteoclast differentiation and activity will provide insight as to how hyper-active osteoclasts lead to pathological bone loss, contributing to diseases such as osteoporosis. Reversible modifications to the DNA such as histone acetylation, methylation, phosphorylation and ubiquitylation alters the access of transcriptional machinery to DNA and regulates gene expression and osteoclast differentiation and activity. It is critical for the management of bone related diseases to understand the role of these chromatin modifying proteins during osteoclast differentiation, as potential therapies targeting these proteins are currently under development.


Nutrients ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 1222
Author(s):  
Domitilla Mandatori ◽  
Letizia Pelusi ◽  
Valeria Schiavone ◽  
Caterina Pipino ◽  
Natalia Di Pietro ◽  
...  

Osteoporosis (OP) and vascular calcification (VC) represent relevant health problems that frequently coexist in the elderly population. Traditionally, they have been considered independent processes, and mainly age-related. However, an increasing number of studies have reported their possible direct correlation, commonly defined as “bone-vascular crosstalk”. Vitamin K2 (VitK2), a family of several natural isoforms also known as menaquinones (MK), has recently received particular attention for its role in maintaining calcium homeostasis. In particular, VitK2 deficiency seems to be responsible of the so-called “calcium paradox” phenomenon, characterized by low calcium deposition in the bone and its accumulation in the vessel wall. Since these events may have important clinical consequences, and the role of VitK2 in bone-vascular crosstalk has only partially been explained, this review focuses on its effects on the bone and vascular system by providing a more recent literature update. Overall, the findings reported here propose the VitK2 family as natural bioactive molecules that could be able to play an important role in the prevention of bone loss and vascular calcification, thus encouraging further in-depth studies to achieve its use as a dietary food supplement.


Stroke ◽  
2014 ◽  
Vol 45 (suppl_1) ◽  
Author(s):  
George Howard ◽  
Mary Cushman ◽  
Maciej Banach ◽  
Brett M Kissela ◽  
David C Goff ◽  
...  

Purpose: The importance of stroke research in the elderly is increasing as America is “graying.” For most risk factors for most diseases (including stroke), the magnitude of association with incident events decreases at older ages. Potential changes in the impact of risk factors could be a “true” effect, or could be due to methodological issues such as age-related changes in residual confounding. Methods: REGARDS followed 27,748 stroke-free participants age 45 and over for an average of 5.3 years, during which 715 incident strokes occurred. The association of the “Framingham” risk factors (hypertension [HTN], diabetes, smoking, AFib, LVH and heart disease) with incident stroke risk was assessed in age strata of 45-64 (Young), 65-74 (Middle), and 75+ (Old). For those with and without an “index” risk factor (e.g., HTN), the average number of “other” risk factors was calculated. Results: With the exception of AFib, there was a monotonic decrease in the magnitude of the impact across the age strata, with HTN, diabetes, smoking and LVH even becoming non-significant in the elderly (Figure 1). However, for most factors, the increasing prevalence of other risk factors with age impacts primarily those with the index risk factor absent (Figure 2, example HTN as the “index” risk factor). Discussion: The impact of stroke risk factors substantially declined at older ages. However, this decrease is partially attributable to increases in the prevalence of other risk factors among those without the index risk factor, as there was little change in the prevalence of other risk factors in those with the index risk factor. Hence, the impact of the index risk factor is attenuated by increased risk in the comparison group. If this phenomenon is active with latent risk factors, estimates from multivariable analysis will also decrease with age. A deeper understanding of age-related changes in the impact of risk factors is needed.


Stroke ◽  
2016 ◽  
Vol 47 (suppl_1) ◽  
Author(s):  
Anjali Chauhan ◽  
Jacob Hudobenko ◽  
Anthony Patrizz ◽  
Louise D McCullough

Introduction: GDF 11 is a member of the transforming growth factor β superfamily. Loss of GDF11 occurs with aging and declining levels correlate with several detrimental age-associated phenotypes in both peripheral tissues and brain. Restoration of GDF11 enhances neurogenesis and cognitive function in aged mice. Brain expression of GDF11 has not been investigated after stroke. Stroke differentially affects the elderly. In this work we examined the role of GDF11 in aging, stroke and its potential utility as a neuroprotective agent. Methods: Male C57/BL6NCrl young (2-3 months) and aged (19-21) mice were used. Brain GDF11 expression was evaluated in young and aged mice by western blot. Focal ischemia was induced with a transient middle cerebral artery occlusion (MCAO). Mice were randomly assigned into two groups and were subjected to 90 min MCAO. Group 1 received vehicle (phosphate buffered saline) and group 2 was administered rGDF11 (100 ug/kg., ip) at the onset of ischemia. In additional experiments, the efficacy of delayed treatment (3 h after ischemia) with rGDF11 was tested. These mice were subjected to a 60 min MCAO. Mice were euthanized after 24 hours and 7 days respectively and brains were harvested to estimate infarct area. Results: A significant decrease in brain GDF11 levels was observed in aged mice as compared to young (p<0.05). Additionally, a significant decline in brain GDF11 expression was observed after stroke at 24 hours vs. sham groups (p<0.05). A significant decrease in cortical and hemispheric infarct area was observed in the rGDF11 group (cortical 48.73±1.05; hemisphere 49.68±3.58) as compared to vehicle group (60.54±4.88; 61.35±6.03), when GDF was administered at the time of ischemia. Delayed treatment with rGDF11 also reduced infarct at 7 days. Conclusions: Brain GDF11 levels decline with age and after stroke. Supplementation with rGDF11 ameliorates stroke induced injury in young mice at 24h and 7 days. These finding suggest potential role of GDF11 in age and stroke. Restoration of age-related loss of GDF may be a viable therapy for stroke.


Gerontology ◽  
2017 ◽  
Vol 63 (6) ◽  
pp. 580-589 ◽  
Author(s):  
Juan Diego Naranjo ◽  
Jenna L. Dziki ◽  
Stephen F. Badylak

Sarcopenia is a complex and multifactorial disease that includes a decrease in the number, structure and physiology of muscle fibers, and age-related muscle mass loss, and is associated with loss of strength, increased frailty, and increased risk for fractures and falls. Treatment options are suboptimal and consist of exercise and nutrition as the cornerstone of therapy. Current treatment principles involve identification and modification of risk factors to prevent the disease, but these efforts are of limited value to the elderly individuals currently affected by sarcopenia. The development of new and effective therapies for sarcopenia is challenging. Potential therapies can target one or more of the proposed multiple etiologies such as the loss of regenerative capacity of muscle, age-related changes in the expression of signaling molecules such as growth hormone, IGF-1, myostatin, and other endocrine signaling molecules, and age-related changes in muscle physiology like denervation and mitochondrial dysfunction. The present paper reviews regenerative medicine strategies that seek to restore adequate skeletal muscle structure and function including exogenous delivery of cells and pharmacological therapies to induce myogenesis or reverse the physiologic changes that result in the disease. Approaches that modify the microenvironment to provide an environment conducive to reversal and mitigation of the disease represent a potential regenerative medicine approach that is discussed herein.


Blood ◽  
1988 ◽  
Vol 71 (6) ◽  
pp. 1726-1730
Author(s):  
KA Melez ◽  
LF Fries ◽  
BS Bender ◽  
T Quinn ◽  
MM Frank

Decreased immune functions have been suggested as a cause for the increased incidence of autoimmunity, malignancy, and infection in the elderly population. To assess the possible role of changes in macrophage function in the aging process we studied the Fc receptor- mediated clearance of IgG-coated erythrocytes in 56 healthy normal volunteers by following the removal of radiolabeled autologous erythrocytes. An age-related decrease in Fc-mediated clearance rates in both female and male subjects was found, which suggests a physiological decline of this macrophage function in older individuals.


Author(s):  
В. С. Мякотных ◽  
А. П. Сиденкова ◽  
Е. С. Остапчук ◽  
И. А. Кулакова ◽  
Н. А. Белых ◽  
...  

Высокий риск когнитивных расстройств у лиц пожилого и старческого возраста заставляет, с одной стороны, искать их причины, с другой - возможности профилактики. В связи с этим в последние годы получило распространение понятие когнитивного резерва, подразумевающего совокупность количественных параметров головного мозга и его способности сохранять высокую функциональную активность в процессе старения и на фоне связанной с возрастом патологии головного мозга. Представленный в статье материал на основе обзора научной литературы освещает два основных момента, касающихся возможности сохранения когнитивного резерва, - гендерный и образовательный факторы. Указывается на разные возможности женщин и мужчин, связанные со структурными и функциональными особенностями ЦНС у представителей разного пола, и на особую роль поддерживаемого в течение всей жизни образовательного процесса. Обозначена авторская позиция о необходимости разделения понятий образования и образованности, то есть уровня общей культуры и создания удобного инструмента для определения последнего. Это, в свою очередь, помогло бы в разработке модели когнитивного резерва, нацеленной на предотвращение трансформации физиологического когнитивного старения в патологическое. The high risk of cognitive disorders in the elderly and senile age makes, on the one hand, to look for their causes, on the other - the possibility of prevention. In this regard, in recent years, the concept of cognitive reserve has become widespread, implying a set of quantitative parameters of the brain and its ability to maintain high functional activity in the process of aging and against the background of age-related brain pathology. The material presented in the article on the basis of the review of scientific literature highlights two main points concerning the possibility of preserving the cognitive reserve-gender and educational factors. It is pointed to the different opportunities of women and men associated with the structural and functional characteristics of the Central nervous system in representatives of different sexes and the special role of the educational process supported throughout life. The author’s position on the need to separate the concepts of education and the level of General culture, and the creation of a convenient tool for determining the latter is indicated. This, in turn, would help in the development of a cognitive reserve model aimed at preventing the transformation of physiological cognitive aging into pathological aging.


Sign in / Sign up

Export Citation Format

Share Document