scholarly journals Intestinal Epithelium-Derived Luminally Released Extracellular Vesicles in Sepsis Exhibit the Ability to Suppress TNF-α and IL-17A Expression in Mucosal Inflammation

2020 ◽  
Vol 21 (22) ◽  
pp. 8445
Author(s):  
Michael G. Appiah ◽  
Eun Jeong Park ◽  
Samuel Darkwah ◽  
Eiji Kawamoto ◽  
Yuichi Akama ◽  
...  

Sepsis is a systemic inflammatory disorder induced by a dysregulated immune response to infection resulting in dysfunction of multiple critical organs, including the intestines. Previous studies have reported contrasting results regarding the abilities of exosomes circulating in the blood of sepsis mice and patients to either promote or suppress inflammation. Little is known about how the gut epithelial cell-derived exosomes released in the intestinal luminal space during sepsis affect mucosal inflammation. To study this question, we isolated extracellular vesicles (EVs) from intestinal lavage of septic mice. The EVs expressed typical exosomal (CD63 and CD9) and epithelial (EpCAM) markers, which were further increased by sepsis. Moreover, septic-EV injection into inflamed gut induced a significant reduction in the messaging of pro-inflammatory cytokines TNF-α and IL-17A. MicroRNA (miRNA) profiling and reverse transcription and quantitative polymerase chain reaction (RT-qPCR) revealed a sepsis-induced exosomal increase in multiple miRNAs, which putatively target TNF-α and IL-17A. These results imply that intestinal epithelial cell (IEC)-derived luminal EVs carry miRNAs that mitigate pro-inflammatory responses. Taken together, our study proposes a novel mechanism by which IEC EVs released during sepsis transfer regulatory miRNAs to cells, possibly contributing to the amelioration of gut inflammation.

Cartilage ◽  
2019 ◽  
pp. 194760351988938
Author(s):  
Christoph Bauer ◽  
Christoph Stotter ◽  
Vivek Jeyakumar ◽  
Eugenia Niculescu-Morzsa ◽  
Bojana Simlinger ◽  
...  

Objective Cobalt and chromium (CoCr) ions from metal implants are released into the joint due to biotribocorrosion, inducing apoptosis and altering gene expression in various cell types. Here, we asked whether CoCr ions concentration-dependently changed viability, transcriptional activity, and inflammatory response in human articular chondrocytes. Design Human articular chondrocytes were exposed to Co (1.02-16.33 ppm) and Cr (0.42-6.66 ppm) ions and cell viability and early/late apoptosis (annexin V and 7-AAD) were assessed in 2-dimensional cell cultures using the XTT assay and flow cytometry, respectively. Changes in chondrocyte morphology were assessed using transmitted light microscopy. The effects of CoCr ions on transcriptional activity of chondrocytes were evaluated by quantitative polymerase chain reaction (qPCR). The inflammatory responses were determined by measuring the levels of released pro-inflammatory cytokines (interleukin-1β [IL-1β], IL-6, IL-8, and tumor necrosis factor–α [TNF-α]). Results CoCr ions concentration-dependently reduced metabolic activity and induced early and late apoptosis after 24 hours in culture. After 72 hours, the majority of chondrocytes (>90%) were apoptotic at the highest concentrations of CoCr ions (16.33/6/66 ppm). SOX9 expression was concentration-dependently enhanced, whereas expression of COL2A1 linearly decreased after 24 hours. IL-8 release was enhanced proportionally to CoCr ions levels, whereas IL-1β, IL-6, and TNF-α levels were not affected by the treatments. Conclusions CoCr ions showed concentration- and time-dependent effects on articular chondrocytes. Fractions of apoptotic articular chondrocytes were proportional to CoCr ion concentrations. In addition, metabolic activity and expression of chondrocyte-specific genes were decreased by CoCr ions. Furthermore, exposure to CoCr ions caused a release of pro-inflammatory cytokines.


2021 ◽  
Author(s):  
Qin Zhou ◽  
Baomei He ◽  
Haibo Kong ◽  
Yanru Wang ◽  
Wenlan Wang

Abstract Objective: MicroRNAs (miRNAs) are small noncoding RNAs that control gene expression at the posttranscriptional level. Some dysregulated miRNAs have been shown to play essential roles in epileptic development. This study aimed to determine if microRNA-322-5p regulates seizure and seizure damage by targeting the NFκB-TLR4 associated inflammatory signaling pathway.Methods: Pilocarpine-induced epileptic rat model was established. Immunohistochemical staining demonstrated the pathology of epilepsy. The expression of microRNA-322-5p, inflammatory markers, NF-kB, TLR4, IL-1β and IL-6, and synaptic inhibitory molecules, GAD1 and GABA, were assessed by a quantitative polymerase chain reaction, and western blotting, respectively.Results: The expression of microRNA-322-5p was significantly decreased in the SE (status epilepticus) rats compared with the normal counterparts. The reduction of miR-322-5p was accompanied by an increased level of pro‑inflammatory cytokines such as IL-6 and TNF-α via increased NF-kB expression and reduced GAD1 and GABA expression. The exogenously increased miR-322-5p level by mimic molecules significantly reduced the inflammatory profiles and increased GAD1 and GABA expressions in the S.E. rat brain compared to nontreated counterparts. Conclusions: Our findings suggest that the restoration of miR-322-5p resulted in a significantly reduced TRL4/IRF1/NF-kb associated inflammatory circuit and increased GAD1 and GABA expression. These findings suggest that miR-322-5p induction may be of therapeutic potential for neural damage as a result of repeated epileptic episodes.


2014 ◽  
Vol 5 (4) ◽  
pp. 483-495 ◽  
Author(s):  
N. Habil ◽  
W. Abate ◽  
J. Beal ◽  
A.D. Foey

The inducible antimicrobial peptide human β-defensin-2 (hBD-2) stimulated by pro-inflammatory cytokines and bacterial products is essential to antipathogen responses of gut epithelial cells. Commensal and probiotic bacteria can augment such mucosal defences. Probiotic use in the treatment of inflammatory bowel disease, however, may have adverse effects, boosting inflammatory responses. The aim of this investigation was to determine the effect of selected probiotic strains on hBD-2 production by epithelial cells induced by pathologically relevant pro-inflammatory cytokines and the role of cytokine modulators in controlling hBD-2. Caco-2 colonic intestinal epithelial cells were pre-incubated with heat-killed probiotics, i.e. Lactobacillus casei strain Shirota (LcS) or Lactobacillus fermentum strain MS15 (LF), followed by stimulation of hBD-2 by interleukin (IL)-1β and tumour necrosis factor alpha (TNF-α) in the absence or presence of exogenous IL-10 or anti-IL-10 neutralising antibody. Cytokines and hBD-2 mRNA and protein were analysed by real-time quantitative polymerase chain reaction and enzyme-linked immunosorbent assay. LcS augmented IL-1β-induced hBD-2, whereas LF enhanced TNF-α- and suppressed IL-1β-induced hBD-2. LF enhanced TNF-α-induced TNF-α and suppressed IL-10, whereas augmented IL-1β-induced IL-10. LcS upregulated IL-1β-induced TNF-α mRNA and suppressed IL-10. Endogenous IL-10 differentially regulated hBD-2; neutralisation of IL-10 augmented TNF-α- and suppressed IL-1β-induced hBD-2. Exogenous IL-10, however, suppressed both TNF-α- and IL-1β-induced hBD-2; LcS partially rescued suppression in TNF-α- and IL-1β-stimulation, whereas LF further suppressed IL-1β-induced hBD-2. It can be concluded that probiotic strains differentially regulate hBD-2 mRNA expression and protein secretion, modulation being dictated by inflammatory stimulus and resulting cytokine environment.


Nutrients ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 2794 ◽  
Author(s):  
Cao ◽  
Chen ◽  
Ren ◽  
Zhang ◽  
Tan ◽  
...  

Punicalagin, a hydrolysable tannin of pomegranate juice, exhibits multiple biological effects, including inhibiting production of pro-inflammatory cytokines in macrophages. Autophagy, an intracellular self-digestion process, has been recently shown to regulate inflammatory responses. In this study, we investigated the anti-inflammatory potential of punicalagin in lipopolysaccharide (LPS) induced RAW264.7 macrophages and uncovered the underlying mechanisms. Punicalagin significantly attenuated, in a concentration-dependent manner, LPS-induced release of NO and decreased pro-inflammatory cytokines TNF-α and IL-6 release at the highest concentration. We found that punicalagin inhibited NF-κB and MAPK activation in LPS-induced RAW264.7 macrophages. Western blot analysis revealed that punicalagin pre-treatment enhanced LC3II, p62 expression, and decreased Beclin1 expression in LPS-induced macrophages. MDC assays were used to determine the autophagic process and the results worked in concert with Western blot analysis. In addition, our observations indicated that LPS-induced releases of NO, TNF-α, and IL-6 were attenuated by treatment with autophagy inhibitor chloroquine, suggesting that autophagy inhibition participated in anti-inflammatory effect. We also found that punicalagin downregulated FoxO3a expression, resulting in autophagy inhibition. Overall these results suggested that punicalagin played an important role in the attenuation of LPS-induced inflammatory responses in RAW264.7 macrophages and that the mechanisms involved downregulation of the FoxO3a/autophagy signaling pathway.


2007 ◽  
Vol 292 (4) ◽  
pp. G1070-G1078 ◽  
Author(s):  
Ryan M. Carlson ◽  
Stephan R. Vavricka ◽  
Jyrki J. Eloranta ◽  
Mark W. Musch ◽  
Donna L. Arvans ◽  
...  

Sustained expression of cytoprotective intestinal epithelial heat shock proteins (Hsps), particularly Hsp27, depends on stimuli derived from bacterial flora. In this study, we examined the role of the bacterial chemotactic peptide fMLP in stimulating colonic epithelial Hsp expression at concentrations encountered in a physiological milieu. Treatment of the polarized human intestinal epithelial cell line Caco2bbe with physiological concentrations of fMLP (10–100 nM) induced expression of Hsp27, but not Hsp72, in a time- and concentration-dependent manner. Induction of Hsp27 by fMLP was specific since the fMLP analogs MRP and MLP were not effective. Hsp27 induction by fMLP was blocked by the fMLP-receptor antagonist BOC-FLFLF and was blocked when the dipeptide transporter PepT1, an entry pathway for fMLP, was silenced. fMLP activated both the p38 and ERK1/2 MAP kinase pathways in Caco2bbe cells, but not the SAPK/JNK pathway. The p38 inhibitor SB203580, but not the MEK-1 inhibitor PD98059, blocked Hsp27 induction by fMLP. fMLP treatment inhibited actin depolymerization and decreased transepithelial resistance caused by the oxidant monochloramine, and this inhibition was reversed by silencing Hsp27 expression. fMLP pretreatment also inhibited activation of proinflammatory transcription factor NF-κB by TNF-α in Caco2bbe cells, reducing induction of NF-κB target genes by TNF-α both in human intestinal biopsies and Caco2bbe cells. In conclusion, fMLP may contribute to the maintenance of intestinal homeostasis by mediating physiological expression of Hsp27, enhancing cellular protection, and negatively regulating the inflammatory response.


Antioxidants ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 530 ◽  
Author(s):  
Eugenie Mussard ◽  
Sundy Jousselin ◽  
Annabelle Cesaro ◽  
Brigitte Legrain ◽  
Eric Lespessailles ◽  
...  

Andrographis paniculata was widely used in traditional herbal medicine to treat various diseases. This study explored the potential anti-aging activity of Andrographis paniculata in cutaneous cells. Human, adult, low calcium, high temperature (HaCaT) cells were treated with methanolic extract (ME), andrographolide (ANDRO), neoandrographolide (NEO), 14-deoxyandrographolide (14DAP) and 14-deoxy-11,12-didehydroandrographolide (14DAP11-12). Oxidative stress and inflammation were induced by hydrogen peroxide and lipopolysaccharide/TNF-α, respectively. Reactive oxygen species (ROS) production was measured by fluorescence using a 2′,7′-dichlorofluorescein diacetate (DCFH-DA) probe and cytokines were quantified by ELISA for interleukin-8 (IL-8) or reverse transcription-quantitative polymerase chain reaction (RT-qPCR) for tumor necrosis factor-α (TNF-α). Hyaluronic acid (HA) secretion was determined by an ELISA. Our results show a decrease in ROS production and TNF-α expression by ME (5 µg/mL) in HaCaT under pro-oxidant and pro-inflammatory conditions, respectively. ME protected HaCaT against oxidative stress and inflammation. Our findings confirm that ME can be used for the development of bioactive compounds against epidermal damage.


2001 ◽  
Vol 280 (4) ◽  
pp. G572-G583 ◽  
Author(s):  
Q. Chang ◽  
B. L. Tepperman

Tumor necrosis factor (TNF)-α can induce cytotoxicity and apoptosis in a number of cell types and has been implicated in the regulation of many inflammatory processes. It has been suggested that protein kinase C (PKC) is one of the intracellular mediators of the actions of TNF-α. In the present study, the role of PKC isoforms in TNF-α-mediated cytotoxicity and apoptosis in intestinal cells was investigated using the rat epithelial cell line, IEC-18. Cells were incubated with TNF-α in the presence or absence of the transcription inhibitor actinomycin D (AMD). The extent of cell damage was enhanced when AMD was added to incubation medium, suggesting that new protein synthesis plays a role in the cytotoxic action of TNF. TNF-α also induced the translocation of PKC-α, -δ, and -ε from cytosol to the membrane fraction of the intestinal cells. Furthermore, the cytotoxic and apoptotic effects of TNF were reduced by pretreating the cells with the PKC-ε translocation inhibitor, PKC-εV1–2. In contrast, although cells incubated with the phorbol ester phorbol 12-myristate 13-acetate (PMA) also displayed an increase in cell injury, the extent of cytotoxicity and apoptosis was not enhanced by AMD. Furthermore, PMA-induced cell damage was reduced by rottlerin, a PKC-δ inhibitor. Caspase-3, an enzyme implicated in the mediation of apoptosis, was activated in cells in response to either TNF-α or PMA stimulation, and its effects on this activity were reduced by selective inhibition of PKC-ε and -δ, respectively. Furthermore, inhibition of caspase-3 activity reduced apoptosis. These data suggest that activation of selective PKC isoforms mediate the effects of TNF-α on intestinal epithelial cell injury.


Sign in / Sign up

Export Citation Format

Share Document