scholarly journals Potato NAC Transcription Factor StNAC053 Enhances Salt and Drought Tolerance in Transgenic Arabidopsis

2021 ◽  
Vol 22 (5) ◽  
pp. 2568
Author(s):  
Qi Wang ◽  
Cun Guo ◽  
Zhiyuan Li ◽  
Jinhao Sun ◽  
Zhichao Deng ◽  
...  

The NAC (NAM, ATAF1/2, and CUC2) transcription factors comprise one of the largest transcription factor families in plants and play important roles in stress responses. However, little is known about the functions of potato NAC family members. Here we report the cloning of a potato NAC transcription factor gene StNAC053, which was significantly upregulated after salt, drought, and abscisic acid treatments. Furthermore, the StNAC053-GFP fusion protein was found to be located in the nucleus and had a C-terminal transactivation domain, implying that StNAC053 may function as a transcriptional activator in potato. Notably, Arabidopsis plants overexpressing StNAC053 displayed lower seed germination rates compared to wild-type under exogenous ABA treatment. In addition, the StNAC053 overexpression Arabidopsis lines displayed significantly increased tolerance to salt and drought stress treatments. Moreover, the StNAC053-OE lines were found to have higher activities of superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) under multiple stress treatments. Interestingly, the expression levels of several stress-related genes including COR15A,DREB1A, ERD11, RAB18, ERF5, and KAT2, were significantly upregulated in these StNAC053-overexpressing lines. Taken together, overexpression of the stress-inducible StNAC053 gene could enhance the tolerances to both salt and drought stress treatments in Arabidopsis, likely by upregulating stress-related genes.

2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Cuiling Yuan ◽  
Chunjuan Li ◽  
Xiaodong Lu ◽  
Xiaobo Zhao ◽  
Caixia Yan ◽  
...  

Abstract Background Peanut is one of the most important oil crop species worldwide. NAC transcription factor (TF) genes play important roles in the salt and drought stress responses of plants by activating or repressing target gene expression. However, little is known about NAC genes in peanut. Results We performed a genome-wide characterization of NAC genes from the diploid wild peanut species Arachis duranensis and Arachis ipaensis, which included analyses of chromosomal locations, gene structures, conserved motifs, expression patterns, and cis-acting elements within their promoter regions. In total, 81 and 79 NAC genes were identified from A. duranensis and A. ipaensis genomes. Phylogenetic analysis of peanut NACs along with their Arabidopsis and rice counterparts categorized these proteins into 18 distinct subgroups. Fifty-one orthologous gene pairs were identified, and 46 orthologues were found to be highly syntenic on the chromosomes of both A. duranensis and A. ipaensis. Comparative RNA sequencing (RNA-seq)-based analysis revealed that the expression of 43 NAC genes was up- or downregulated under salt stress and under drought stress. Among these genes, the expression of 17 genes in cultivated peanut (Arachis hypogaea) was up- or downregulated under both stresses. Moreover, quantitative reverse transcription PCR (RT-qPCR)-based analysis revealed that the expression of most of the randomly selected NAC genes tended to be consistent with the comparative RNA-seq results. Conclusion Our results facilitated the functional characterization of peanut NAC genes, and the genes involved in salt and drought stress responses identified in this study could be potential genes for peanut improvement.


2020 ◽  
Vol 21 (13) ◽  
pp. 4701
Author(s):  
Qing He ◽  
Hanyang Cai ◽  
Mengyan Bai ◽  
Man Zhang ◽  
Fangqian Chen ◽  
...  

The basic leucine zipper (bZIP) is a plant-specific transcription factor family that plays crucial roles in response to biotic and abiotic stresses. However, little is known about the function of bZIP genes in soybean. In this study, we isolated a bZIP gene, GmbZIP19, from soybean. A subcellular localization study of GmbZIP19 revealed its nucleus localization. We showed that GmbZIP19 expression was significantly induced by ABA (abscisic acid), JA (jasmonic acid) and SA (salicylic acid), but reduced under salt and drought stress conditions. Further, GmbZIP19 overexpression Arabidopsis lines showed increased resistance to S. sclerotiorum and Pseudomonas syringae associated with upregulated ABA-, JA-, ETH- (ethephon-)and SA-induced marker genes expression, but exhibited sensitivity to salt and drought stresses in association with destroyed stomatal closure and downregulated the salt and drought stresses marker genes’ expression. We generated a soybean transient GmbZIP19 overexpression line, performed a Chromatin immunoprecipitation assay and found that GmbZIP19 bound to promoters of ABA-, JA-, ETH-, and SA-induced marker genes in soybean. The yeast one-hybrid verified the combination. The current study suggested that GmbZIP19 is a positive regulator of pathogen resistance and a negative regulator of salt and drought stress tolerance.


2020 ◽  
Vol 21 (4) ◽  
pp. 1198 ◽  
Author(s):  
Deguo Han ◽  
Man Du ◽  
Zhengyi Zhou ◽  
Shuang Wang ◽  
Tiemei Li ◽  
...  

NAC (no apical meristem (NAM), Arabidopsis thaliana transcription activation factor (ATAF1/2) and cup shaped cotyledon (CUC2)) transcription factors play crucial roles in plant development and stress responses. Nevertheless, to date, only a few reports regarding stress-related NAC genes are available in Malus baccata (L.) Borkh. In this study, the transcription factor MbNAC25 in M. baccata was isolated as a member of the plant-specific NAC family that regulates stress responses. Expression of MbNAC25 was induced by abiotic stresses such as drought, cold, high salinity and heat. The ORF of MbNAC25 is 1122 bp, encodes 373 amino acids and subcellular localization showed that MbNAC25 protein was localized in the nucleus. In addition, MbNAC25 was highly expressed in new leaves and stems using real-time PCR. To analyze the function of MbNAC25 in plants, we generated transgenic Arabidopsis plants that overexpressed MbNAC25. Under low-temperature stress (4 °C) and high-salt stress (200 mM NaCl), plants overexpressing MbNAC25 enhanced tolerance against cold and drought salinity conferring a higher survival rate than that of wild-type (WT). Correspondingly, the chlorophyll content, proline content, the activities of antioxidant enzymes superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) were significantly increased, while malondialdehyde (MDA) content was lower. These results indicated that the overexpression of MbNAC25 in Arabidopsis plants improved the tolerance to cold and salinity stress via enhanced scavenging capability of reactive oxygen species (ROS).


2020 ◽  
Vol 21 (20) ◽  
pp. 7778
Author(s):  
Man Zhang ◽  
Yanhui Liu ◽  
Hanyang Cai ◽  
Mingliang Guo ◽  
Mengnan Chai ◽  
...  

Soybean (Glycine max), as an important oilseed crop, is constantly threatened by abiotic stress, including that caused by salinity and drought. bZIP transcription factors (TFs) are one of the largest TF families and have been shown to be associated with various environmental-stress tolerances among species; however, their function in abiotic-stress response in soybean remains poorly understood. Here, we characterized the roles of soybean transcription factor GmbZIP15 in response to abiotic stresses. The transcript level of GmbZIP15 was suppressed under salt- and drought-stress conditions. Overexpression of GmbZIP15 in soybean resulted in hypersensitivity to abiotic stress compared with wild-type (WT) plants, which was associated with lower transcript levels of stress-responsive genes involved in both abscisic acid (ABA)-dependent and ABA-independent pathways, defective stomatal aperture regulation, and reduced antioxidant enzyme activities. Furthermore, plants expressing a functional repressor form of GmbZIP15 exhibited drought-stress resistance similar to WT. RNA-seq and qRT-PCR analyses revealed that GmbZIP15 positively regulates GmSAHH1 expression and negatively regulates GmWRKY12 and GmABF1 expression in response to abiotic stress. Overall, these data indicate that GmbZIP15 functions as a negative regulator in response to salt and drought stresses.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e8716
Author(s):  
Lihua Xie ◽  
Miaomiao Cai ◽  
Xiangyu Li ◽  
Huifang Zheng ◽  
Yali Xie ◽  
...  

The NAC family is one of the largest transcription factor families unique to plants, which regulates the growth and development, biotic and abiotic stress responses, and maturation and senescence in plants. In this study, PheNAC3, a NAC gene, was isolated and characterized from moso bamboo (Phyllostachys edulis). PheNAC3 belong to the NAC1 subgroup and has a conserved NAC domain on the N-terminus, which with 88.74% similarity to ONAC011 protein. PheNAC3 localized in the nucleus and exhibited transactivation activity. PheNAC3 was upregulated during the process of senescence of leaves and detected shoots. PheNAC3 was also induced by ABA, MeJA, NaCl and darkness, but it had no remarkable response to PEG and SA treatments. Overexpression of PheNAC3 could cause precocious senescence in Arabidopsis. Transgenic Arabidopsis displayed faster seed germination, better seedling growth, and a higher survival rate than the wild-type under salt or drought stress conditions. Moreover, AtSAG12 associated with senescence and AtRD29A and AtRD29b related to ABA were upregulated by PheNAC3 overexpression, but AtCAB was inhibited. These findings show that PheNAC3 may participate in leaf senescence and play critical roles in the salt and drought stress response.


2021 ◽  
Author(s):  
Ambika Dudhate ◽  
Harshraj Shinde ◽  
Pei Yu ◽  
Daisuke Tsugama ◽  
Shashi Kumar Gupta ◽  
...  

Abstract Background: Pearl millet (Pennisetum glaucum) is a cereal crop that possesses the ability to withstand drought, salinity and high temperature stresses. The NAC [NAM (No Apical Meristem), ATAF1 (Arabidopsis thaliana Activation Factor 1), and CUC2 (Cup-shaped Cotyledon)] transcription factor family is one of the largest transcription factor families in plants. NAC family members are known to regulate plant growth and abiotic stress response. Currently, no reports are available on the functions of the NAC family in pearl millet. Results: Our genome-wide analysis found 151 NAC transcription factor genes (PgNACs) in the pearl millet genome. Thirty-eight and 76 PgNACs were found to be segmental and dispersed duplicated respectively. Phylogenetic analysis divided these NAC transcription factors into 11 groups (A-K). Three PgNACs (-073, -29, and -151) were found to be membrane-associated transcription factors. Seventeen other conserved motifs were found in PgNACs. Based on the similarity of PgNACs to NAC proteins in other species, the functions of PgNACs were predicted. In total, 88 microRNA target sites were predicted in 59 PgNACs. A previously performed transcriptome analysis suggests that the expression of 30 and 42 PgNACs are affected by salinity stress and drought stress, respectively. The expression of 36 randomly selected PgNACs were examined by quantitative reverse transcription-PCR. Many of these genes showed diverse salt- and drought-responsive expression patterns in roots and leaves. These results confirm that PgNACs are potentially involved in regulating abiotic stress tolerance in pearl millet.Conclusion: The pearl millet genome contains 151 NAC transcription factor genes that can be classified into 11 groups. Many of these genes are either upregulated or downregulated by either salinity or drought stress and may therefore contribute to establishing stress tolerance in pearl millet.


2021 ◽  
Vol 22 (21) ◽  
pp. 11922
Author(s):  
Jing Wang ◽  
Li Chen ◽  
Yun Long ◽  
Weina Si ◽  
Beijiu Cheng ◽  
...  

Heat shock transcription factors (HSFs) play important roles in plant growth, development, and stress responses. However, the function of these transcription factors in abiotic stress responses in maize (Zea mays) remains largely unknown. In this study, we characterized a novel HSF transcription factor gene, ZmHsf08, from maize. ZmHsf08 was highly homologous to SbHsfB1, BdHsfB1, and OsHsfB1, and has no transcriptional activation activity. The expression profiles demonstrated that ZmHsf08 was differentially expressed in various organs of maize and was induced by salt, drought, and abscisic acid (ABA) treatment. Moreover, the overexpression of ZmHsf08 in maize resulted in enhanced sensitivity to salt and drought stresses, displaying lower survival rates, higher reactive oxygen species (ROS) levels, and increased malondialdehyde (MDA) contents compared with wild-type (WT) plants. Furthermore, RT-qPCR analyses revealed that ZmHsf08 negatively regulates a number of stress/ABA-responsive genes under salt and drought stress conditions. Collectively, these results indicate that ZmHsf08 plays a negative role in response to salt and drought stresses in maize.


2020 ◽  
Author(s):  
Ambika Dudhate ◽  
Harshraj Shinde ◽  
Pei Yu ◽  
Daisuke Tsugama ◽  
Shashi Kumar Gupta ◽  
...  

Abstract Background: Pearl millet (Pennisetum glaucum) is a cereal crop that possesses the ability to withstand drought, salinity and high temperature stresses. The NAC [NAM (No Apical Meristem), ATAF1 (Arabidopsis thaliana Activation Factor 1), and CUC2 (Cup-shaped Cotyledon)] transcription factor family is one of the largest transcription factor families in plants. NAC family members are known to regulate plant growth and abiotic stress response. Currently, no reports are available on the functions of the NAC family in pearl millet. Results: Our genome-wide analysis found 151 NAC transcription factor genes (PgNACs) in the pearl millet genome. Thirty-eight and 76 PgNACs were found to be segmental and dispersed duplicated respectively. Phylogenetic analysis divided these NAC transcription factors into 11 groups (A-K). Three PgNACs (-073, -29, and -151) were found to be membrane-associated transcription factors. Seventeen other conserved motifs were found in PgNACs. Based on the similarity of PgNACs to NAC proteins in other species, the functions of PgNACs were predicted. In total, 88 microRNA target sites were predicted in 59 PgNACs. A previously performed transcriptome analysis suggests that the expression of 30 and 42 PgNACs are affected by salinity stress and drought stress, respectively. The expression of 36 randomly selected PgNACs were examined by quantitative reverse transcription-PCR. Many of these genes showed diverse salt- and drought-responsive expression patterns in roots and leaves. These results confirm that PgNACs are potentially involved in regulating abiotic stress tolerance in pearl millet.Conclusion: The pearl millet genome contains 151 NAC transcription factor genes that can be classified into 11 groups. Many of these genes are either upregulated or downregulated by either salinity or drought stress and may therefore contribute to establishing stress tolerance in pearl millet.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Ambika Dudhate ◽  
Harshraj Shinde ◽  
Pei Yu ◽  
Daisuke Tsugama ◽  
Shashi Kumar Gupta ◽  
...  

Abstract Background Pearl millet (Pennisetum glaucum) is a cereal crop that possesses the ability to withstand drought, salinity and high temperature stresses. The NAC [NAM (No Apical Meristem), ATAF1 (Arabidopsis thaliana Activation Factor 1), and CUC2 (Cup-shaped Cotyledon)] transcription factor family is one of the largest transcription factor families in plants. NAC family members are known to regulate plant growth and abiotic stress response. Currently, no reports are available on the functions of the NAC family in pearl millet. Results Our genome-wide analysis found 151 NAC transcription factor genes (PgNACs) in the pearl millet genome. Thirty-eight and 76 PgNACs were found to be segmental and dispersed duplicated respectively. Phylogenetic analysis divided these NAC transcription factors into 11 groups (A-K). Three PgNACs (− 073, − 29, and − 151) were found to be membrane-associated transcription factors. Seventeen other conserved motifs were found in PgNACs. Based on the similarity of PgNACs to NAC proteins in other species, the functions of PgNACs were predicted. In total, 88 microRNA target sites were predicted in 59 PgNACs. A previously performed transcriptome analysis suggests that the expression of 30 and 42 PgNACs are affected by salinity stress and drought stress, respectively. The expression of 36 randomly selected PgNACs were examined by quantitative reverse transcription-PCR. Many of these genes showed diverse salt- and drought-responsive expression patterns in roots and leaves. These results confirm that PgNACs are potentially involved in regulating abiotic stress tolerance in pearl millet. Conclusion The pearl millet genome contains 151 NAC transcription factor genes that can be classified into 11 groups. Many of these genes are either upregulated or downregulated by either salinity or drought stress and may therefore contribute to establishing stress tolerance in pearl millet.


Sign in / Sign up

Export Citation Format

Share Document