scholarly journals Interleukin-34-CSF1R Signaling Axis Promotes Epithelial Cell Transformation and Breast Tumorigenesis

2021 ◽  
Vol 22 (5) ◽  
pp. 2711
Author(s):  
Muna Poudel ◽  
Garam Kim ◽  
Poshan Yugal Bhattarai ◽  
Jin-Young Kim ◽  
Hong Seok Choi

IL-34 has been recently identified as a ligand for CSF1R that regulates various cellular processes including cell proliferation, survival, and differentiation. Although the binding of IL-34 to CSF1R modulates several cancer-driving signaling pathways, little is known about the role of IL-34/CSF1R signaling in breast cancer. Herein, we report that IL-34 induces epithelial cell transformation and breast tumorigenesis through activation of MEK/ERK and JNK/c-Jun pathways. IL-34 increased the phosphorylation of MEK1/2, ERK1/2, JNK1/2, and c-Jun through CSF1R in mouse skin epidermal JB6 C141 cells and human breast cancer MCF7 cells. IL-34 enhanced c-Fos and c-Jun promoter activity, resulting in increased AP-1 transactivation activity in JB6 Cl41 and MCF7 cells. Moreover, PIN1 enhanced IL-34-induced phosphorylation of MEK1/2, ERK1/2, JNK1/2, and c-Jun in JB6 Cl41 and MCF7 cells. Inhibition of PIN1 using juglone prevented the IL-34-induced transformation of JB6 C141 cells. Similarly, silencing of PIN1 reduced the IL-34-induced tumorigenicity of MCF7 cells. Consistent with these results, the synergistic model showed that treatment with juglone suppressed the IL-34-induced growth of tumors formed by 4T1 cells in BALB/c mice. Our study demonstrates the role of IL-34-induced MEK/ERK and JNK/c-Jun cascades in breast cancer and highlights the regulatory role of PIN1 in IL-34-induced breast tumorigenesis.

2020 ◽  
Vol 27 ◽  
Author(s):  
Ji-Yeon Lee ◽  
Myoung Hee Kim

: HOX genes belong to the highly conserved homeobox superfamily, responsible for the regulation of various cellular processes that control cell homeostasis, from embryogenesis to carcinogenesis. The abnormal expression of HOX genes is observed in various cancers, including breast cancer; they act as oncogenes or as suppressors of cancer, according to context. In this review, we analyze HOX gene expression patterns in breast cancer and examine their relationship, based on the three-dimensional genome structure of the HOX locus. The presence of non-coding RNAs, embedded within the HOX cluster, and the role of these molecules in breast cancer have been reviewed. We further evaluate the characteristic activity of HOX protein in breast cancer and its therapeutic potential.


2021 ◽  
Vol 22 (16) ◽  
pp. 8427
Author(s):  
Beata Smolarz ◽  
Anna Zadrożna-Nowak ◽  
Hanna Romanowicz

Long noncoding RNAs (lncRNAs) are the largest groups of ribonucleic acids, but, despite the increasing amount of literature data, the least understood. Given the involvement of lncRNA in basic cellular processes, especially in the regulation of transcription, the role of these noncoding molecules seems to be of great importance for the proper functioning of the organism. Studies have shown a relationship between disturbed lncRNA expression and the pathogenesis of many diseases, including cancer. The present article presents a detailed review of the latest reports and data regarding the importance of lncRNA in the development of cancers, including breast carcinoma.


2008 ◽  
Vol 27 (2) ◽  
pp. 97-105 ◽  
Author(s):  
Cimona V. Hinton ◽  
Shalom Avraham ◽  
Hava Karsenty Avraham

2015 ◽  
Author(s):  
Stacy J. Park ◽  
Tonya C. Walser ◽  
Linh M. Tran ◽  
Catalina Perdomo ◽  
Teresa Wang ◽  
...  

2014 ◽  
Vol 26 (7) ◽  
pp. 1604-1615 ◽  
Author(s):  
Rajshri Singh ◽  
Bhavani S. Shankar ◽  
Krishna B. Sainis

NAR Cancer ◽  
2021 ◽  
Vol 3 (3) ◽  
Author(s):  
Kanchan Kumari ◽  
Paula Groza ◽  
Francesca Aguilo

Abstract Collectively referred to as the epitranscriptome, RNA modifications play important roles in gene expression control regulating relevant cellular processes. In the last few decades, growing numbers of RNA modifications have been identified not only in abundant ribosomal (rRNA) and transfer RNA (tRNA) but also in messenger RNA (mRNA). In addition, many writers, erasers and readers that dynamically regulate the chemical marks have also been characterized. Correct deposition of RNA modifications is prerequisite for cellular homeostasis, and its alteration results in aberrant transcriptional programs that dictate human disease, including breast cancer, the most frequent female malignancy, and the leading cause of cancer-related death in women. In this review, we emphasize the major RNA modifications that are present in tRNA, rRNA and mRNA. We have categorized breast cancer-associated chemical marks and summarize their contribution to breast tumorigenesis. In addition, we describe less abundant tRNA modifications with related pathways implicated in breast cancer. Finally, we discuss current limitations and perspectives on epitranscriptomics for use in therapeutic strategies against breast and other cancers.


2019 ◽  
Vol 20 (24) ◽  
pp. 6342
Author(s):  
Teizo Yoshimura ◽  
Kaoru Nakamura ◽  
Chunning Li ◽  
Masayoshi Fujisawa ◽  
Tsuyoshi Shiina ◽  
...  

We previously reported that 4T1 murine breast cancer cells produce GM-CSF that up-regulates macrophage expression of several cancer promoting genes, including Mcp-1/Ccl2, Ccl17 and Rankl, suggesting a critical role of cancer cell-derived GM-CSF in cancer progression. Here, we attempted to define whether 4T1 cell-derived GM-CSF contributes to the expression of these genes by 4T1tumors, and their subsequent progression. Intraperitoneal injection of anti-GM-CSF neutralizing antibody did not decrease the expression of Mcp-1, Ccl17 or Rankl mRNA by 4T1 tumors. To further examine the role of cancer cell-derived GM-CSF, we generated GM-CSF-deficient 4T1 cells by using the Crisper-Cas9 system. As previously demonstrated, 4T1 cells are a mixture of cells and cloning of cells by itself significantly reduced tumor growth and lung metastasis. By contrast, GM-CSF-deficiency did not affect tumor growth, lung metastasis or the expression of these chemokine and cytokine genes in tumor tissues. By in-situ hybridization, the expression of Mcp-1 mRNA was detected in both F4/80-expressing and non-expressing cells in tumors of GM-CSF-deficient cells. These results indicate that cancer cell-derived GM-CSF is dispensable for the tuning of the 4T1 tumor microenvironment and the production of MCP-1, CCL17 or RANKL in the 4T1 tumor microenvironment is likely regulated by redundant mechanisms.


2021 ◽  
Vol 12 (3) ◽  
pp. 1757-1769
Author(s):  
Preeti Tanaji Mane ◽  
Sangram Prakash Patil ◽  
Balaji Sopanrao Wakure ◽  
Pravin Shridhar Wakte

Breast cancer has messed the life of a greater number of women being the most common cancer affecting them worldwide. A number of risk factors contribute the breast malignancy, however, genetic drift is accountable the most. Depending on the cell origin, invasiveness and receptors involved, breast cancer is classified into various subtypes. The accurate diagnosis of breast cancer is important as it defines the prognosis and directs the type of treatment required. A number of major signaling pathways involved in breast tumorigenesis and its development include estrogen receptors (ERs), HER2, Wnt/β-catenin, Notch, Hedgehog (Hh), PI3K and mTOR pathway. Furthermore, certain enzymes like Cyclin dependent kinases and breast tumor kinases also play a vital role in cell cycle regulation and therefore, in the development of breast neoplasms. Recent studies have also enlightened the role of non-coding RNAs in breast cancer development. This review discusses various aspects of breast cancer such as its etiology, subtypes, various signaling pathways involved, targets projected by these pathways and the current treatment options based on a few of these targets. Also, the role of different genes, enzymes and non-coding RNAs related to breast tumorigenesis and development is discussed.


Sign in / Sign up

Export Citation Format

Share Document