scholarly journals Long Non-Coding RNA CRYBG3 Promotes Lung Cancer Metastasis via Activating the eEF1A1/MDM2/MTBP Axis

2021 ◽  
Vol 22 (6) ◽  
pp. 3211
Author(s):  
Anqing Wu ◽  
Jiaxin Tang ◽  
Ziyang Guo ◽  
Yingchu Dai ◽  
Jing Nie ◽  
...  

The occurrence of distant tumor metastases is a major barrier in non-small cell lung cancer (NSCLC) therapy, and seriously affects clinical treatment and patient prognosis. Recently, long non-coding RNAs (lncRNAs) have been demonstrated to be crucial regulators of metastasis in lung cancer. The aim of this study was to reveal the underlying mechanisms of a novel lncRNA LNC CRYBG3 in regulating NSCLC metastasis. Experimental results showed that LNC CRYBG3 was upregulated in NSCLC cells compared with normal tissue cells, and its level was involved in these cells’ metastatic ability. Exogenously overexpressed LNC CRYBG3 increased the metastatic ability and the protein expression level of the metastasis-associated proteins Snail and Vimentin in low metastatic lung cancer HCC827 cell line. In addition, LNC CRYBG3 contributed to HCC827 cell metastasis in vivo. Mechanistically, LNC CRYBG3 could directly combine with eEF1A1 and promote it to move into the nucleus to enhance the transcription of MDM2. Overexpressed MDM2 combined with MDM2 binding protein (MTBP) to reduce the binding of MTBP with ACTN4 and consequently increased cell migration mediated by ACTN4. In conclusion, the LNC CRYBG3/eEF1A1/MDM2/MTBP axis is a novel signaling pathway regulating tumor metastasis and may be a potential therapeutic target for NSCLC treatment.

Cancers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1772
Author(s):  
Taek-In Oh ◽  
Mingyu Lee ◽  
Yoon-Mi Lee ◽  
Geon-Hee Kim ◽  
Daekee Lee ◽  
...  

PGC1α oppositely regulates cancer metastasis in melanoma, breast, and pancreatic cancer; however, little is known about its impact on lung cancer metastasis. Transcriptome and in vivo xenograft analysis show that a decreased PGC1α correlates with the epithelial–mesenchymal transition (EMT) and lung cancer metastasis. The deletion of a single Pgc1α allele in mice promotes bone metastasis of KrasG12D-driven lung cancer. Mechanistically, PGC1α predominantly activates ID1 expression, which interferes with TCF4-TWIST1 cooperation during EMT. Bioinformatic and clinical studies have shown that PGC1α and ID1 are downregulated in lung cancer, and correlate with a poor survival rate. Our study indicates that TCF4-TWIST1-mediated EMT, which is regulated by the PGC1α-ID1 transcriptional axis, is a potential diagnostic and therapeutic target for metastatic lung cancer.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Yu Zhong ◽  
Liting Yang ◽  
Fang Xiong ◽  
Yi He ◽  
Yanyan Tang ◽  
...  

AbstractActin filament associated protein 1 antisense RNA 1 (named AFAP1-AS1) is a long non-coding RNA and overexpressed in many cancers. This study aimed to identify the role and mechanism of AFAP1-AS1 in lung cancer. The AFAP1-AS1 expression was firstly assessed in 187 paraffin-embedded lung cancer and 36 normal lung epithelial tissues by in situ hybridization. The migration and invasion abilities of AFAP1-AS1 were investigated in lung cancer cells. To uncover the molecular mechanism about AFAP1-AS1 function in lung cancer, we screened proteins that interact with AFAP1-AS1 by RNA pull down and the mass spectrometry analyses. AFAP1-AS1 was highly expressed in lung cancer clinical tissues and its expression was positively correlated with lung cancer patients’ poor prognosis. In vivo experiments confirmed that AFAP1-AS1 could promote lung cancer metastasis. AFAP1-AS1 promoted lung cancer cells migration and invasion through interacting with Smad nuclear interacting protein 1 (named SNIP1), which inhibited ubiquitination and degradation of c-Myc protein. Upregulation of c-Myc molecule in turn promoted the expression of ZEB1, ZEB2, and SNAIL gene, which ultimately enhanced epithelial to mesenchymal transition (EMT) and lung cancer metastasis. Understanding the molecular mechanism by which AFAP1-AS1 promotes lung cancer’s migration and invasion may provide novel therapeutic targets for lung cancer patients’ early diagnosis and therapy.


2005 ◽  
Vol 71 (2) ◽  
pp. 110-116 ◽  
Author(s):  
Robert A. Garwood ◽  
Mark D. Sawyer ◽  
E.J. Ledesma ◽  
Eugene Foley ◽  
Jeffrey A. Claridge

Gastrointestinal tract perforation (GITP) secondary to metastatic lung cancer is extremely rare. We present a case of small bowel perforation secondary to metastatic lung cancer. The objective of this study was to review the current literature and further characterize the incidence, histology, and risk of GITP secondary to lung cancer metastasis. A Medline search was done to identify all the cases of GITP attributed to metastatic lung cancer reported in the literature. Data was collected and analyzed from a collection of cases in the medical literature since 1960. We identified 98 cases of perforated lung cancer metastasis to the small intestine. Four gastric perforations, three colonic perforations, and one appendiceal perforation were also identified but not analyzed. The mean age was 64.5 years. There was a male predominance of 89 per cent versus 11 per cent female. Perforations occurred most often in the jejunum (53%) followed by ileum (28%). Combined jejunum-ileum lesions accounted for 4 per cent of perforations. No duodenal perforations were reported, though a specific site was not determined in 13 per cent of cases. Small bowel perforations were most often caused by adenocarcinoma (23.7%), squamous cell carcinoma (22.7%), large cell carcinoma (20.6%), and small cell carcinoma (19.6%). The prevalence of small bowel perforation secondary to a given primary lung cancer histology varied by region. The mean survival was 66 days with 50 per cent of patients not surviving past 30 days. Despite a high incidence of lung cancer, small bowel perforation secondary to lung cancer metastasis remains relatively rare. Perforated metastases occur more often in men and are found more commonly in the jejunum. Small bowel perforations are caused most often by adenocarcinoma; however, squamous cell and large cell carcinoma metastases are more likely to result in perforation. Small bowel perforation in this setting has a significant impact on mortality, decreasing 1-year survival to less than 3 per cent.


Cancers ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 265 ◽  
Author(s):  
Shang-Gin Wu ◽  
Tzu-Hua Chang ◽  
Yi-Nan Liu ◽  
Jin-Yuan Shih

Tumor metastasis is a hallmark of cancer, with distant metastasis frequently developing in lung cancer, even at initial diagnosis, resulting in poor prognosis and high mortality. However, available biomarkers cannot reliably predict cancer spreading sites. The metastatic cascade involves highly complicated processes including invasion, migration, angiogenesis, and epithelial-to-mesenchymal transition that are tightly controlled by various genetic expression modalities along with interaction between cancer cells and the extracellular matrix. In particular, microRNAs (miRNAs), a group of small non-coding RNAs, can influence the transcriptional and post-transcriptional processes, with dysregulation of miRNA expression contributing to the regulation of cancer metastasis. Nevertheless, although miRNA-targeted therapy is widely studied in vitro and in vivo, this strategy currently affords limited feasibility and a few miRNA-targeted therapies for lung cancer have entered into clinical trials to date. Advances in understanding the molecular mechanism of metastasis will thus provide additional potential targets for lung cancer treatment. This review discusses the current research related to the role of miRNAs in lung cancer invasion and metastasis, with a particular focus on the different metastatic lesions and potential miRNA-targeted treatments for lung cancer with the expectation that further exploration of miRNA-targeted therapy may establish a new spectrum of lung cancer treatments.


2021 ◽  
Vol 10 ◽  
Author(s):  
Siyao Dong ◽  
Cheng Wu ◽  
Chengyan Song ◽  
Baocui Qi ◽  
Lu Liu ◽  
...  

Lung cancer metastasis is the leading cause of poor prognosis and death for patients. Long noncoding RNAs (lncRNAs) have been validated the close correlation with lung cancer metastasis, but few comprehensive analyses have reported the specific association between lncRNA and cancer metastasis, especially via both competing endogenous RNA (ceRNA) regulatory relationships and functional regulatory networks. Here, we constructed primary and metastatic ceRNA networks, identified 12 and 3 candidate lncRNAs for lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC) respectively and excavated some drugs that might have potential therapeutic effects on lung cancer progression. In summary, this study systematically analyzed the competitive relationships and regulatory mechanism of the repeatedly dysregulated lncRNAs in lung cancer carcinogenesis and metastasis, and provided a new idea for screening potential therapeutic drugs for lung cancer.


2019 ◽  
Vol 133 (5) ◽  
pp. 709-722 ◽  
Author(s):  
Chia-Chia Chao ◽  
Po-Chun Chen ◽  
Pei-Chen Chiou ◽  
Chin-Jung Hsu ◽  
Po-I Liu ◽  
...  

AbstractThe epithelial–mesenchymal transition (EMT) phenotype, whereby mature epithelial cells undergo phenotype transition and differentiate into motile, invasive cells, has been indicated in tumor metastasis. The melatonin hormone secreted by the pineal gland has an antioxidant effect and protects cells against carcinogenic substances that reduce tumor progression. However, the effects of melatonin in EMT and lung cancer metastasis are largely unknown. We found that melatonin down-regulated EMT by inhibiting Twist/Twist1 (twist family bHLH transcription factor 1) expression. This effect was mediated by MT1 receptor, PLC, p38/ERK and β-catenin signaling cascades. Twist expression was positively correlated with tumor stage and negatively correlated with MT1 expression in lung cancer specimens. Furthermore, melatonin inhibited EMT marker expression and lung cancer metastasis to liver in vivo. Finally, melatonin shows promise in the treatment of lung cancer metastasis and deserves further study.


2018 ◽  
Author(s):  
Ok-Seon Kwon ◽  
Haeseung Lee ◽  
Hyeon-Joon Kong ◽  
Ji Eun Park ◽  
Wooin Lee ◽  
...  

AbstractAlthough many molecular targets for cancer therapy have been discovered, they often show poor druggability, which is a major obstacle to develop targeted drugs. As an alternative route to drug discovery, we adopted anin silicodrug repositioning (in silicoDR) approach based on large-scale gene expression signatures, with the goal of identifying inhibitors of lung cancer metastasis. Our analysis of clinicogenomic data identified GALNT14, an enzyme involved in O-linked N-acetyl galactosamine glycosylation, as a putative driver of lung cancer metastasis leading to poor survival. To overcome the poor druggability of GALNT14, we leveraged Connectivity Map approach, anin silicoscreening for drugs that are likely to revert the metastatic expression patterns. It leads to identification of bortezomib (BTZ) as a potent metastatic inhibitor, bypassing direct inhibition of poorly druggable target, GALNT14. The anti-metastatic effect of BTZ was verifiedin vitroandin vivo. Notably, both BTZ treatment andGALNT14knockdown attenuated TGFβ-mediated gene expression and suppressed TGFβ-dependent metastatic genes, suggesting that BTZ acts by modulating TGFβ signalingTaken together, these results demonstrate that ourin silicoDR approach is a viable strategy to identify a candidate drug for undruggable targets, and to uncover its underlying mechanisms.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Xiaohong Tan ◽  
Lu Tong ◽  
Lin Li ◽  
Jinjin Xu ◽  
Shaofang Xie ◽  
...  

AbstractSMAD4 is mutated in human lung cancer, but the underlying mechanism by which Smad4 loss-of-function (LOF) accelerates lung cancer metastasis is yet to be elucidated. Here, we generate a highly aggressive lung cancer mouse model bearing conditional KrasG12D, p53fl/fl LOF and Smad4fl/fl LOF mutations (SPK), showing a much higher incidence of tumor metastases than the KrasG12D, p53fl/fl (PK) mice. Molecularly, PAK3 is identified as a downstream effector of Smad4, mediating metastatic signal transduction via the PAK3-JNK-Jun pathway. Upregulation of PAK3 by Smad4 LOF in SPK mice is achieved by attenuating Smad4-dependent transcription of miR-495 and miR-543. These microRNAs (miRNAs) directly bind to the PAK3 3′UTR for blockade of PAK3 production, ultimately regulating lung cancer metastasis. An inverse correlation between Smad4 and PAK3 pathway components is observed in human lung cancer. Our study highlights the Smad4-PAK3 regulation as a point of potential therapy in metastatic lung cancer.


Sign in / Sign up

Export Citation Format

Share Document