scholarly journals Inflammatory Molecules Associated with Ultraviolet Radiation-Mediated Skin Aging

2021 ◽  
Vol 22 (8) ◽  
pp. 3974
Author(s):  
Tuba M. Ansary ◽  
Md. Razib Hossain ◽  
Koji Kamiya ◽  
Mayumi Komine ◽  
Mamitaro Ohtsuki

Skin is the largest and most complex organ in the human body comprised of multiple layers with different types of cells. Different kinds of environmental stressors, for example, ultraviolet radiation (UVR), temperature, air pollutants, smoking, and diet, accelerate skin aging by stimulating inflammatory molecules. Skin aging caused by UVR is characterized by loss of elasticity, fine lines, wrinkles, reduced epidermal and dermal components, increased epidermal permeability, delayed wound healing, and approximately 90% of skin aging. These external factors can cause aging through reactive oxygen species (ROS)-mediated inflammation, as well as aged skin is a source of circulatory inflammatory molecules which accelerate skin aging and cause aging-related diseases. This review article focuses on the inflammatory pathways associated with UVR-mediated skin aging.

2021 ◽  
Author(s):  
Bristy Ganguly ◽  
Manisha Hota ◽  
Jyotsnarani Pradhan

Skin aging is an inescapable phenomenon that leads to a functional decline of the skin along with emergence of characteristics features such as coarse skin, wrinkles, loss of elasticity and an overall aged appearance. While chronological aging is inevitable occurring with time, photoaging is contributed by Ultraviolet radiation and reactive oxygen species principally which can boost the skin aging process. These processes can however be ameliorated with the help of treatment strategies, one of them being supplementation with antioxidants. This chapter summarizes diverse mechanisms underlying skin aging with regards to Ultraviolet radiation and reactive oxygen species along with role of antioxidants in impeding these processes. Further, it provides a glimpse towards possible future explorations and challenges dominating the field of skin aging.


2021 ◽  
Vol 22 (5) ◽  
pp. 2410
Author(s):  
Hantae Jo ◽  
Sofia Brito ◽  
Byeong Mun Kwak ◽  
Sangkyu Park ◽  
Mi-Gi Lee ◽  
...  

Mesenchymal stem cells (MSCs) are multipotent stem cells derived from adult stem cells. Primary MSCs can be obtained from diverse sources, including bone marrow, adipose tissue, and umbilical cord blood. Recently, MSCs have been recognized as therapeutic agents for skin regeneration and rejuvenation. The skin can be damaged by wounds, caused by cutting or breaking of the tissue, and burns. Moreover, skin aging is a process that occurs naturally but can be worsened by environmental pollution, exposure to ultraviolet radiation, alcohol consumption, tobacco use, and undernourishment. MSCs have healing capacities that can be applied in damaged and aged skin. In skin regeneration, MSCs increase cell proliferation and neovascularization, and decrease inflammation in skin injury lesions. In skin rejuvenation, MSCs lead to production of collagen and elastic fibers, inhibition of metalloproteinase activation, and promote protection from ultraviolet radiation-induced senescence. In this review, we focus on how MSCs and MSC-derived molecules improve diseased and aged skin. Additionally, we emphasize that induced pluripotent stem cell (iPSC)-derived MSCs are potentially advanced MSCs, which are suitable for cell therapy.


2021 ◽  
Vol 22 (13) ◽  
pp. 6814
Author(s):  
Anna Domaszewska-Szostek ◽  
Monika Puzianowska-Kuźnicka ◽  
Alina Kuryłowicz

Skin aging is associated with the accumulation of senescent cells and is related to many pathological changes, including decreased protection against pathogens, increased susceptibility to irritation, delayed wound healing, and increased cancer susceptibility. Senescent cells secrete a specific set of pro-inflammatory mediators, referred to as a senescence-associated secretory phenotype (SASP), which can cause profound changes in tissue structure and function. Thus, drugs that selectively eliminate senescent cells (senolytics) or neutralize SASP (senostatics) represent an attractive therapeutic strategy for age-associated skin deterioration. There is growing evidence that plant-derived compounds (flavonoids) can slow down or even prevent aging-associated deterioration of skin appearance and function by targeting cellular pathways crucial for regulating cellular senescence and SASP. This review summarizes the senostatic and senolytic potential of flavonoids in the context of preventing skin aging.


Author(s):  
Rana Elewa ◽  
Evgenia Makrantonaki ◽  
Christos C. Zouboulis

AbstractNeuropeptides (NP) are peptides that are released as chemical messengers from nerve cells. They act either in an endocrine manner, where they reach their target cells via the bloodstream or a paracrine manner, as co-transmitters modulating the function of neurotransmitters. To date approximately 100 different NP have been described in the literature. In recent years, several studies have documented that human skin expresses several functional receptors for NP, such as corticotropin-releasing hormone, melanocortins, β-endorphin, vasoactive intestinal polypeptide, neuropeptide Y and calcitonin gene-related peptide. These receptors modulate the production of inflammatory cytokines, proliferation, differentiation, lipogenesis and hormone metabolism in human skin cells. In addition, several NP are directly produced by human skin cells, indicating the complexity of understanding the real functions of NPs in human skin. In this review we address the possible effects of neuropeptides on the pathogenesis of aged skin.


Atmosphere ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 116
Author(s):  
Mascia Benedusi ◽  
Elena Frigato ◽  
Cristiano Bertolucci ◽  
Giuseppe Valacchi

Circadian rhythms are 24-h oscillations driven by a hypothalamic master oscillator that entrains peripheral clocks in almost all cells, tissues and organs. Circadian misalignment, triggered by industrialization and modern lifestyles, has been linked to several pathological conditions, with possible impairment of the quality or even the very existence of life. Living organisms are continuously exposed to air pollutants, and among them, ozone or particulate matters (PMs) are considered to be among the most toxic to human health. In particular, exposure to environmental stressors may result not only in pulmonary and cardiovascular diseases, but, as it has been demonstrated in the last two decades, the skin can also be affected by pollution. In this context, we hypothesize that chronodistruption can exacerbate cell vulnerability to exogenous damaging agents, and we suggest a possible common mechanism of action in deregulation of the homeostasis of the pulmonary, cardiovascular and cutaneous tissues and in its involvement in the development of pathological conditions.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Hervé Pageon ◽  
Hélène Zucchi ◽  
Sylvie Ricois ◽  
Philippe Bastien ◽  
Daniel Asselineau

Skin aging is the result of superimposed intrinsic (individual) and extrinsic (e.g., UV exposure or nutrition) aging. Previous works have reported a relationship between UV irradiation and glycation in the aging process, leading, for example, to modified radical species production and the appearance of AGEs (advanced glycosylation end products) in increasing quantities, particularly glycoxidation products like pentosidine. In addition, the colocalization of AGEs and elastosis has also been observed. We first investigated the combination of the glycation reaction and UVA effects on a reconstructed skin model to explain their cumulative biological effect. We found that UVA exposure combined with glycation had the ability to intensify the response for specific markers: for example, MMP1 or MMP3 mRNA, proteases involved in extracellular matrix degradation, or proinflammatory cytokine, IL1α, protein expression. Moreover, the association of glycation and UVA irradiation is believed to promote an environment that favors the onset of an elastotic-like phenomenon: mRNA coding for elastin, elastase, and tropoelastin expression is increased. Secondly, because the damaging effects of UV radiation in vivo might be more detrimental in aged skin than in young skin due to increased accumulation of pentosidine and the exacerbation of alterations related to chronological aging, we studied the biological effect of soluble pentosidine in fibroblasts grown in monolayers. We found that pentosidine induced upregulation of CXCL2, IL8, and MMP12 mRNA expression (inflammatory and elastotic markers, respectively). Tropoelastin protein expression (elastin precursor) was also increased. In conclusion, fibroblasts in monolayers cultured with soluble pentosidine and tridimensional in vitro skin constructs exposed to the combination of AGEs and UVA promote an inflammatory state and an alteration of the dermal compartment in relation to an elastosis-like environment.


2019 ◽  
Vol 10 ◽  
Author(s):  
Concepcion Parrado ◽  
Sivia Mercado-Saenz ◽  
Azahara Perez-Davo ◽  
Yolanda Gilaberte ◽  
Salvador Gonzalez ◽  
...  

Nutrients ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 2010 ◽  
Author(s):  
Caroline J. Smith

Predicted global climate change, including rising average temperatures, increasing airborne pollution, and ultraviolet radiation exposure, presents multiple environmental stressors contributing to increased morbidity and mortality. Extreme temperatures and more frequent and severe heat events will increase the risk of heat-related illness and associated complications in vulnerable populations, including infants and children. Historically, children have been viewed to possess inferior thermoregulatory capabilities, owing to lower sweat rates and higher core temperature responses compared to adults. Accumulating evidence counters this notion, with limited child–adult differences in thermoregulation evident during mild and moderate heat exposure, with increased risk of heat illness only at environmental extremes. In the context of predicted global climate change, extreme environmental temperatures will be encountered more frequently, placing children at increased risk. Thermoregulatory and overall physiological strain in high temperatures may be further exacerbated by exposure to/presence of physiological and environmental stressors including pollution, ultraviolet radiation, obesity, diabetes, associated comorbidities, and polypharmacy that are more commonly occurring at younger ages. The aim of this review is to revisit fundamental differences in child–adult thermoregulation in the face of these multifaceted climate challenges, address emerging concerns, and emphasize risk reduction strategies for the health and performance of children in the heat.


Sign in / Sign up

Export Citation Format

Share Document