scholarly journals UVA Exposure Combined with Glycation of the Dermis Are Two Catalysts for Skin Aging and Promotes a Favorable Environment to the Appearance of Elastosis

2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Hervé Pageon ◽  
Hélène Zucchi ◽  
Sylvie Ricois ◽  
Philippe Bastien ◽  
Daniel Asselineau

Skin aging is the result of superimposed intrinsic (individual) and extrinsic (e.g., UV exposure or nutrition) aging. Previous works have reported a relationship between UV irradiation and glycation in the aging process, leading, for example, to modified radical species production and the appearance of AGEs (advanced glycosylation end products) in increasing quantities, particularly glycoxidation products like pentosidine. In addition, the colocalization of AGEs and elastosis has also been observed. We first investigated the combination of the glycation reaction and UVA effects on a reconstructed skin model to explain their cumulative biological effect. We found that UVA exposure combined with glycation had the ability to intensify the response for specific markers: for example, MMP1 or MMP3 mRNA, proteases involved in extracellular matrix degradation, or proinflammatory cytokine, IL1α, protein expression. Moreover, the association of glycation and UVA irradiation is believed to promote an environment that favors the onset of an elastotic-like phenomenon: mRNA coding for elastin, elastase, and tropoelastin expression is increased. Secondly, because the damaging effects of UV radiation in vivo might be more detrimental in aged skin than in young skin due to increased accumulation of pentosidine and the exacerbation of alterations related to chronological aging, we studied the biological effect of soluble pentosidine in fibroblasts grown in monolayers. We found that pentosidine induced upregulation of CXCL2, IL8, and MMP12 mRNA expression (inflammatory and elastotic markers, respectively). Tropoelastin protein expression (elastin precursor) was also increased. In conclusion, fibroblasts in monolayers cultured with soluble pentosidine and tridimensional in vitro skin constructs exposed to the combination of AGEs and UVA promote an inflammatory state and an alteration of the dermal compartment in relation to an elastosis-like environment.

2013 ◽  
Vol 210 (1) ◽  
pp. 173-190 ◽  
Author(s):  
Etienne Boulter ◽  
Soline Estrach ◽  
Aurélia Errante ◽  
Catherine Pons ◽  
Laurence Cailleteau ◽  
...  

Skin aging is linked to reduced epidermal proliferation and general extracellular matrix atrophy. This involves factors such as the cell adhesion receptors integrins and amino acid transporters. CD98hc (SLC3A2), a heterodimeric amino acid transporter, modulates integrin signaling in vitro. We unravel CD98hc functions in vivo in skin. We report that CD98hc invalidation has no appreciable effect on cell adhesion, clearly showing that CD98hc disruption phenocopies neither CD98hc knockdown in cultured keratinocytes nor epidermal β1 integrin loss in vivo. Instead, we show that CD98hc deletion in murine epidermis results in improper skin homeostasis and epidermal wound healing. These defects resemble aged skin alterations and correlate with reduction of CD98hc expression observed in elderly mice. We also demonstrate that CD98hc absence in vivo induces defects as early as integrin-dependent Src activation. We decipher the molecular mechanisms involved in vivo by revealing a crucial role of the CD98hc/integrins/Rho guanine nucleotide exchange factor (GEF) leukemia-associated RhoGEF (LARG)/RhoA pathway in skin homeostasis. Finally, we demonstrate that the deregulation of RhoA activation in the absence of CD98hc is also a result of impaired CD98hc-dependent amino acid transports.


2021 ◽  
Vol 30 ◽  
pp. 096368972097873
Author(s):  
Jing Li ◽  
Youming Zhu ◽  
Na Li ◽  
Tao Wu ◽  
Xianyu Zheng ◽  
...  

The lack of vasculogenesis often hampers the survivability and integration of newly engineered tissue grafts within the host. Autologous endothelial cells (ECs) are an ideal cell source for neovascularization, but they are limited by their scarcity, lack of proliferative capacity, and donor site morbidity upon isolation. The objective of this study was to determine whether differentiation of human dental pulp stem cells (DPSCs) into the endothelial lineage can be enhanced by recombinant ETV2 overexpression. DPSCs were extracted from fresh dental pulp tissues. ETV2 overexpression in DPSCs was achieved by lentiviral infection and cellular morphological changes were evaluated. The mRNA and protein expression levels of endothelial-specific markers were assessed through quantitative real-time polymerase chain reaction, western blot, immunofluorescence staining, and flow cytometry. The tube formation assay and Matrigel plug assay were also performed to evaluate the angiogenic potential of the ETV2-transduced cells in vitro and in vivo, respectively. Additionally, proteomic analysis was performed to analyze global changes in protein expression following ETV2 overexpression. After lentiviral infection, ETV2-overexpressing DPSCs showed endothelial-like morphology. Compared with control DPSCs, significantly higher mRNA and protein expression levels of endothelial-specific genes, including CD31, VE-Cadherin, VEGFR1, and VEGFR2, were detected in ETV2-overexpressing DPSCs. Moreover, ETV2 overexpression enhanced capillary-like tube formation on Matrigel in vitro, as well as neovascularization in vivo. In addition, comparative proteomic profiling showed that ETV2 overexpression upregulated the expression of vascular endothelial growth factor (VEGF) receptors, which was indicative of increased VEGF signaling. Taken together, our results indicate that ETV2 overexpression significantly enhanced the endothelial differentiation of DPSCs. Thus, this study shows that DPSCs can be a promising candidate cell source for tissue engineering applications.


Viruses ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 308
Author(s):  
Ying-Ray Lee ◽  
Chia-Ming Chang ◽  
Yuan-Chieh Yeh ◽  
Chi-Ying F. Huang ◽  
Feng-Mao Lin ◽  
...  

Honeysuckle (Lonicera japonica Thunb) is a traditional Chinese medicine (TCM) with an antipathogenic activity. MicroRNAs (miRNAs) are small non-coding RNA molecules that are ubiquitously expressed in cells. Endogenous miRNA may function as an innate response to block pathogen invasion. The miRNA expression profiles of both mice and humans after the ingestion of honeysuckle were obtained. Fifteen overexpressed miRNAs overlapped and were predicted to be capable of targeting three viruses: dengue virus (DENV), enterovirus 71 (EV71) and SARS-CoV-2. Among them, let-7a was examined to be capable of targeting the EV71 RNA genome by reporter assay and Western blotting. Moreover, honeysuckle-induced let-7a suppression of EV71 RNA and protein expression as well as viral replication were investigated both in vitro and in vivo. We demonstrated that let-7a targeted EV71 at the predicted sequences using luciferase reporter plasmids as well as two infectious replicons (pMP4-y-5 and pTOPO-4643). The suppression of EV71 replication and viral load was demonstrated in two cell lines by luciferase activity, RT-PCR, real-time PCR, Western blotting and plaque assay. Furthermore, EV71-infected suckling mice fed honeysuckle extract or inoculated with let-7a showed decreased clinical scores and a prolonged survival time accompanied with decreased viral RNA, protein expression and virus titer. The ingestion of honeysuckle attenuates EV71 replication and related pathogenesis partially through the upregulation of let-7a expression both in vitro and in vivo. Our previous report and the current findings imply that both honeysuckle and upregulated let-7a can execute a suppressive function against the replication of DENV and EV71. Taken together, this evidence indicates that honeysuckle can induce the expression of let-7a and that this miRNA as well as 11 other miRNAs have great potential to prevent and suppress EV71 replication.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 991
Author(s):  
Melanie S. Matos ◽  
José D. Anastácio ◽  
Cláudia Nunes dos Santos

Inflammation is a crucial and complex process that reestablishes the physiological state after a noxious stimulus. In pathological conditions the inflammatory state may persist, leading to chronic inflammation and causing tissue damage. Sesquiterpene lactones (SLs) are composed of a large and diverse group of highly bioactive plant secondary metabolites, characterized by a 15-carbon backbone structure. In recent years, the interest in SLs has risen due to their vast array of biological activities beneficial for human health. The anti-inflammatory potential of these compounds results from their ability to target and inhibit various key pro-inflammatory molecules enrolled in diverse inflammatory pathways, and prevent or reduce the inflammatory damage on tissues. Research on the anti-inflammatory mechanisms of SLs has thrived over the last years, and numerous compounds from diverse plants have been studied, using in silico, in vitro, and in vivo assays. Besides their anti-inflammatory potential, their cytotoxicity, structure–activity relationships, and pharmacokinetics have been investigated. This review aims to gather the most relevant results and insights concerning the anti-inflammatory potential of SL-rich extracts and pure SLs, focusing on their effects in different inflammatory pathways and on different molecular players.


Antioxidants ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1206
Author(s):  
Aimilia D. Sklirou ◽  
Maria T. Angelopoulou ◽  
Aikaterini Argyropoulou ◽  
Eliza Chaita ◽  
Vasiliki Ioanna Boka ◽  
...  

Skin health is heavily affected by ultraviolet irradiation from the sun. In addition, senile skin is characterized by major changes in the collagen, elastin and in the hyaluronan content. Natural products (NPs) have been shown to delay cellular senescence or in vivo aging by regulating age-related signaling pathways. Moreover, NPs are a preferable source of photoprotective agents and have been proven to be useful against the undesirable skin hyperpigmentation. Greek flora harvests great plant diversity with approximately 6000 plant species, as it has a wealth of NPs. Here, we report an extensive screening among hundreds of plant species. More than 440 plant species and subspecies were selected and evaluated. The extracts were screened for their antioxidant and anti-melanogenic properties, while the most promising were further subjected to various in vitro and cell-based assays related to skin aging. In parallel, their chemical profile was analyzed with High-Performance Thin-Layer Chromatography (HPTLC) and/or Ultra-Performance Liquid Chromatography High-Resolution Mass Spectrometry (UPLC-HRMS). A variety of extracts were identified that can be of great value for the cosmetic industry, since they combine antioxidant, photoprotective, anti-melanogenic and anti-aging properties. In particular, the methanolic extracts of Sideritis scardica and Rosa damascena could be worthy of further attention, since they showed interesting chemical profiles and promising properties against specific targets involved in skin aging.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A750-A750
Author(s):  
Sojin Lee ◽  
Joon Young Park ◽  
Goo-Young Kim ◽  
Sang Woo Jo ◽  
Minhyuk Yun ◽  
...  

BackgroundSuccessful clinical translation of mRNA therapeutics requires an appropriate delivery strategy to overcome instability of mRNA and facilitate cellular uptake into the cells.1 Several lipid based nanoparticle approaches that encapsulate mRNA, notably lipid nanoparticle (LNP), have been developed, but their efficiency for delivery to certain target tissues and toxicity profiles still have room for improvement. The application of a novel polymer based nanoparticle technology platform, so called Stability Enhanced Nano Shells (SENS) for mRNA (mSENS) as a mRNA delivery platform for a cancer vaccine was demonstrated.MethodsThe physicochemical properties of mSENS formulation, particle size and encapsulation efficiency, were characterized using dynamic light scattering (DLS) and gel retardation assay. Using luciferase-encoding mRNA, the protein expression levels in vitro and in vivo were evaluated by luciferase assay or bioluminescence imaging (BLI), respectively. For cancer vaccine studies, antigen (tyrosinase-related protein 2 (Trp-2))-specific T cell responses were assessed by immunophenotyping mouse splenocytes using flow cytometry and by the enzyme-linked immunosorbent spot (ELISPOT) assay. The anti-tumor efficacy was studied in B16F10 lung tumor model in C57BL/6 mice. Liver and systemic toxicity of mSENS treated mice was evaluated through blood chemistry and complete blood count (CBC) tests.ResultsA library of mSENS formulations complexed with luciferase-encoding mRNA, were characterized for their particle size, surface charge, encapsulation efficiency, colloidal stability, and in vitro and in vivo luciferase protein expression level. Upon systemic administration in mice, varying biodistribution profiles were observed, implicating the potential for tailored delivery to target tissues. Particularly, cancer vaccine application was further developed leveraging the formulation with preferential spleen delivery. Following vaccination with Trp-2 mRNA encapsulated with mSENS (Trp-2 mRNA-mSENS) in B16F10 tumor bearing mice, strong Trp-2 antigen-specific IFN-γ T-cell responses were observed. Generated anti-tumor immunity also marked suppression of B16F10 lung tumors were observed in Trp-2-mSENS immunized mice compared to non-immunized controls, demonstrating the potential of mSENS as a mRNA delivery platform for the application for vaccine.ConclusionsProprietary biodegradable polymer based-mSENS platform offers an attractive delivery strategy for mRNA by tailoring to specific therapeutic applications. Depending on the application, whether it’s a vaccine or protein replacement, a rationally designed mSENS formulation can efficiently distribute mRNA to specific tissues. In particular, application of a splenic mSENS formulation for a cancer vaccine has been demonstrated in murine tumor model. In summary, mRNA delivery through mSENS platform is expected to provide significant opportunities in clinical development for mRNA therapeutics.Ethics ApprovalThe study was approved by Samyang Biopharmaceuticals’ IACUC (Institutional Animal Care and Use Committee), approval number SYAU-2027.ReferencePiotr S. Kowalski, Arnab Rudra, Lei Miao, and Daniel G. Anderson, delivering the messenger: advances in technologies for therapeutic mRNA delivery. Molecular Therapy Vol. 27 No 4 April 2019.


2017 ◽  
Vol 43 (5) ◽  
pp. 1961-1973 ◽  
Author(s):  
Yan Bai ◽  
Zhenli Su ◽  
Hanqi Sun ◽  
Wei Zhao ◽  
Xue Chen ◽  
...  

Background/Aims: High-fat diet (HFD) causes cardiac electrical remodeling and increases the risk of ventricular arrhythmias. Aloe-emodin (AE) is an anthraquinone component isolated from rhubarb and has a similar chemical structure with emodin. The protective effect of emodin against cardiac diseases has been reported in the literature. However, the cardioprotective property of AE is still unknown. The present study investigated the effect of AE on HFD-induced QT prolongation in rats. Methods: Adult male Wistar rats were randomly divided into three groups: control, HFD, and AE-treatment groups. Normal diet was given to rats in the control group, high-fat diet was given to rats in HFD and AE-treatment groups for a total of 10 weeks. First, HFD rats and AE-treatment rats were fed with high-fat diet for 4 weeks to establish the HFD model. Serum total cholesterol and triglyceride levels were measured to validate the HFD model. Afterward, AE-treatment rats were intragastrically administered with 100 mg/kg AE each day for 6 weeks. Electrocardiogram monitoring and whole-cell patch-clamp technique were applied to examine cardiac electrical activity, action potential and inward rectifier K+ current (IK1), respectively. Neonatal rat ventricular myocytes (NRVMs) were subjected to cholesterol and/or AE. Protein expression of Kir2.1 was detected by Western blot and miR-1 level was examined by real-time PCR in vivo and in vitro, respectively. Results: In vivo, AE significantly shortened the QT interval, action potential duration at 90% repolarization (APD90) and resting membrane potential (RMP), which were markedly elongated by HFD. AE increased IK1 current and Kir2.1 protein expression which were reduced in HFD rats. Furthermore, AE significantly inhibited pro-arrhythmic miR-1 in the hearts of HFD rats. In vitro, AE decreased miR-1 expression levels resulting in an increase of Kir2.1 protein levels in cholesterol-enriched NRVMs. Conclusions: AE prevents HFD-induced QT prolongation by repressing miR-1 and upregulating its target Kir2.1. These findings suggest a novel pharmacological role of AE in HFD-induced cardiac electrical remodeling.


2005 ◽  
Vol 79 (24) ◽  
pp. 15238-15245 ◽  
Author(s):  
Alejandra E. Arbetman ◽  
Michael Lochrie ◽  
Shangzhen Zhou ◽  
Jennifer Wellman ◽  
Ciaran Scallan ◽  
...  

ABSTRACT Preexisting humoral immunity to adeno-associated virus (AAV) vectors may limit their clinical utility in gene delivery. We describe a novel caprine AAV (AAV-Go.1) capsid with unique biological properties. AAV-Go.1 capsid was cloned from goat-derived adenovirus preparations. Surprisingly, AAV-Go.1 capsid was 94% identical to the human AAV-5, with differences predicted to be largely on the surface and on or under the spike-like protrusions. In an in vitro neutralization assay using human immunoglobulin G (IgG) (intravenous immune globulin [IVIG]), AAV-Go.1 had higher resistance than AAV-5 (100-fold) and resistance similar to that of AAV-4 or AAV-8. In an in vivo model, SCID mice were pretreated with IVIG to generate normal human IgG plasma levels prior to the administration of AAV human factor IX vectors. Protein expression after intramuscular administration of AAV-Go.1 was unaffected in IVIG-pretreated mice, while it was reduced 5- and 10-fold after administration of AAV-1 and AAV-8, respectively. In contrast, protein expression after intravenous administration of AAV-Go.1 was reduced 7.1-fold, similar to the 3.8-fold reduction observed after AAV-8administration in IVIG-pretreated mice, and protein expression was essentially extinguished after AAV-2 administration in mice pretreated with much less IVIG (15-fold). AAV-Go.1 vectors also demonstrated a marked tropism for lung when administered intravenously in SCID mice. The pulmonary tropism and high neutralization resistance to human preexisting antibodies suggest novel therapeutic uses for AAV-Go.1 vectors, including targeting diseases such as cystic fibrosis. Nonprimate sources of AAVs may be useful to identify additional capsids with distinct tropisms and high resistance to neutralization by human preexisting antibodies.


2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
Zhenjian Xu ◽  
Junzhe Chen ◽  
Anping Xu

Abstract Background and Aims Our previous study found a new regulatory T cell subpopulation, CD4+CD126lowFoxp3+ regulatory T cells (CD4+CD126lowFoxp3+ Treg). This cell can maintain a stable immune regulatory function in the inflammatory state. Through in vivo and in vitro experiments, we have confirmed that CD4+CD126lowFoxp3+ Treg has an immunotherapeutic effect on T cell-mediated mouse models of autoimmune diseases such as colitis and collagen-induced arthritis (CIA). Further experimental studies showed that CD4+CD126lowFoxp3+ Treg could reduce the kidney injury caused by autoantibodies and prolong the survival time of lupus mice. However, the mechanism of CD4+CD126lowFoxp3+ Treg immunotherapy in lupus nephritis is not clear. The purpose of this study was to explore the mechanism of CD4+CD126lowFoxp3+ Treg immunotherapy in mice with lupus nephritis. Method In vitro experiments CD4+CD126lowFoxp3+ Treg or CD4+CD126lowFoxp3+ Treg pretreated with PD-1 inhibitor were co-cultured with T or B lymphocytes of lupus mice under different in vitro culture condition. The expression levels of Akt and mTOR of Treg in each group were measured under immunoinflammatory conditions. To observe the effects and differences of Treg groups on the activation, proliferation and differentiation of T or B cells and other immunomodulatory effects. In vivo experiments CD4+CD126lowFoxp3+ Treg (2 × 106/mouse) and CD4+CD126lowFoxp3+ Treg (2 × 106/mouse) pretreated with PD-1 inhibitor and PBS were injected into NZM2328 lupus mice, respectively. After cell injection, urine protein was measured weekly. Autoantibody expression in lupus mice was measured every two weeks. The effects of Treg on the proliferation and differentiation of T/B cells in lupus mice were observed. The therapeutic effects of Treg on lupus mice were observed. Results Compared with CD4+CD126lowFoxp3+ Treg, the expression of Akt and mTOR increases in PD-1 inhibitors pretreatment cells. The activation, proliferation and differentiation functions of T or B lymphocytes of lupus mice were significantly weakened by immunosuppression of PD-1 inhibitors pretreated Treg in vitro, indicating that CD4+CD126lowFoxp3+ Treg may inhibit Akt-mTOR signaling pathway through PD-1 in in vitro. Compared with CD4+CD126lowFoxp3+ Treg, the activation, proliferation and differentiation functions of T or B lymphocytes of lupus mice were significantly weakened by immunosuppression of PD-1 inhibitors pretreated Treg in vivo. And its therapeutic effect on lupus mice was ineffective, indicating that CD4+CD126lowFoxp3+ Treg may inhibit Akt-MTOR signaling pathway through PD-1 in vivo. Conclusion CD4+CD126lowFoxp3+ Treg may inhibit the Akt-mTOR signaling pathway by expressing PD-1, and maintain stable immunomodulatory function in the inflammatory state, thus producing immunotherapeutic effect on lupus nephritis mice.


Sign in / Sign up

Export Citation Format

Share Document