scholarly journals Formulative Study and Intracellular Fate Evaluation of Ethosomes and Transethosomes for Vitamin D3 Delivery

2021 ◽  
Vol 22 (10) ◽  
pp. 5341
Author(s):  
Manuela Costanzo ◽  
Elisabetta Esposito ◽  
Maddalena Sguizzato ◽  
Maria Lacavalla ◽  
Markus Drechsler ◽  
...  

In this pilot study, ethosomes and transethosomes were investigated as potential delivery systems for cholecalciferol (vitamin D3), whose deficiency has been correlated to many disorders such as dermatological diseases, systemic infections, cancer and sarcopenia. A formulative study on the influence of pharmaceutically acceptable ionic and non-ionic surfactants allowed the preparation of different transethosomes. In vitro cytotoxicity was evaluated in different cell types representative of epithelial, connective and muscle tissue. Then, the selected nanocarriers were further investigated at light and transmission electron microscopy to evaluate their uptake and intracellular fate. Both ethosomes and transethosomes proven to have physicochemical properties optimal for transdermal penetration and efficient vitamin D3 loading; moreover, nanocarriers were easily internalized by all cell types, although they followed distinct intracellular fates: ethosomes persisted for long times inside the cytoplasm, without inducing subcellular alteration, while transethosomes underwent rapid degradation giving rise to an intracellular accumulation of lipids. These basic results provide a solid scientific background to in vivo investigations aimed at exploring the efficacy of vitamin D3 transdermal administration in different experimental and pathological conditions.

Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3389
Author(s):  
Ishtiaq Ahmed ◽  
Saif Ur Rehman ◽  
Shiva Shahmohamadnejad ◽  
Muhammad Anjum Zia ◽  
Muhammad Ahmad ◽  
...  

In humans, various sites like cannabinoid receptors (CBR) having a binding affinity with cannabinoids are distributed on the surface of different cell types, where endocannabinoids (ECs) and derivatives of fatty acid can bind. The binding of these substance(s) triggers the activation of specific receptors required for various physiological functions, including pain sensation, memory, and appetite. The ECs and CBR perform multiple functions via the cannabinoid receptor 1 (CB1); cannabinoid receptor 2 (CB2), having a key effect in restraining neurotransmitters and the arrangement of cytokines. The role of cannabinoids in the immune system is illustrated because of their immunosuppressive characteristics. These characteristics include inhibition of leucocyte proliferation, T cells apoptosis, and induction of macrophages along with reduced pro-inflammatory cytokines secretion. The review seeks to discuss the functional relationship between the endocannabinoid system (ECS) and anti-tumor characteristics of cannabinoids in various cancers. The therapeutic potential of cannabinoids for cancer—both in vivo and in vitro clinical trials—has also been highlighted and reported to be effective in mice models in arthritis for the inflammation reduction, neuropathic pain, positive effect in multiple sclerosis and type-1 diabetes mellitus, and found beneficial for treating in various cancers. In human models, such studies are limited; thereby, further research is indispensable in this field to get a conclusive outcome. Therefore, in autoimmune disorders, therapeutic cannabinoids can serve as promising immunosuppressive and anti-fibrotic agents.


RMD Open ◽  
2018 ◽  
Vol 4 (2) ◽  
pp. e000744 ◽  
Author(s):  
Kerstin Klein

The reading of acetylation marks on histones by bromodomain (BRD) proteins is a key event in transcriptional activation. Small molecule inhibitors targeting bromodomain and extra-terminal (BET) proteins compete for binding to acetylated histones. They have strong anti-inflammatory properties and exhibit encouraging effects in different cell types in vitro and in animal models resembling rheumatic diseases in vivo. Furthermore, recent studies that focus on BRD proteins beyond BET family members are discussed.


2017 ◽  
Vol 216 (10) ◽  
pp. 3405-3422 ◽  
Author(s):  
Vasja Urbančič ◽  
Richard Butler ◽  
Benjamin Richier ◽  
Manuel Peter ◽  
Julia Mason ◽  
...  

Filopodia have important sensory and mechanical roles in motile cells. The recruitment of actin regulators, such as ENA/VASP proteins, to sites of protrusion underlies diverse molecular mechanisms of filopodia formation and extension. We developed Filopodyan (filopodia dynamics analysis) in Fiji and R to measure fluorescence in filopodia and at their tips and bases concurrently with their morphological and dynamic properties. Filopodyan supports high-throughput phenotype characterization as well as detailed interactive editing of filopodia reconstructions through an intuitive graphical user interface. Our highly customizable pipeline is widely applicable, capable of detecting filopodia in four different cell types in vitro and in vivo. We use Filopodyan to quantify the recruitment of ENA and VASP preceding filopodia formation in neuronal growth cones, and uncover a molecular heterogeneity whereby different filopodia display markedly different responses to changes in the accumulation of ENA and VASP fluorescence in their tips over time.


Toxins ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 14 ◽  
Author(s):  
Danielle Henn ◽  
Annette Venter ◽  
Christo Botha

Consumption of bufadienolide-containing plants are responsible for many livestock mortalities annually. Bufadienolides are divided into two groups; non-cumulative bufadienolides and cumulative bufadienolides. Cumulative bufadienolides are referred to as neurotoxic, as the chronic intoxication with this type of bufadienolide results in a paretic/paralytic syndrome known as ‘krimpsiekte’. The in vitro cytotoxicity of a non-cumulative bufadienolide, 1α,2α-epoxyscillirosidine, and a cumulative bufadienolide, lanceotoxin B, were compared using the MTT ((3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide reduction) assay after exposing rat myocardial (H9c2) and mouse neuroblastoma (Neuro-2a) cell lines. The effect of these two bufadienolides on cell ultrastructure was also investigated using transmission electron microscopy (TEM). H9c2 cells exhibited greater cytotoxicity when exposed to 1α,2α-epoxyscillirosidine, compared to lanceotoxin B. In contrast, Neuro-2a cells were more susceptible to lanceotoxin B. The EC50 (half maximal effective concentration) of lanceotoxin B exposure of Neuro-2a cells for 24–72 h ranged from 4.4–5.5 µM compared to EC50s of 35.7–37.6 µM for 1α,2α-epoxyscillirosidine exposure of Neuro-2a cells over the same period. 1α,2α-Epoxyscillirosidine induced extensive vacuolization in both cell types, with swollen RER (rough endoplasmic reticulum) and perinuclear spaces. Lanceotoxin B caused swelling of the mitochondria and sequestration of cytoplasmic material within autophagic vesicles. These results corroborate the notion that cumulative bufadienolides are neurotoxic.


2000 ◽  
Vol 276 (15) ◽  
pp. 11552-11558 ◽  
Author(s):  
Janet Fawcett ◽  
Frederick G. Hamel ◽  
Robert G. Bennett ◽  
Zoltan Vajo ◽  
William C. Duckworth

In adult animals, the major effect of insulin on protein turnover is inhibition of protein degradation. Cellular protein degradation is under the control of multiple systems, including lysosomes, proteasomes, calpains, and giant protease. Insulin has been shown to alter proteasome activityin vitroandin vivo. We examined the inhibition of protein degradation by insulin and insulin analogues (LysB28,ProB29-insulin (LysPro), AspB10-insulin (B10), and GluB4,GlnB16,PheB17-insulin (EQF)) in H4, HepG2, and L6 cells. These effects were compared with receptor binding. Protein degradation was examined by release of trichloroacetic acid-soluble radioactivity from cells previously labeled with [3H]leucine. Short- and intermediate-lived proteins were examined. H4 cells bound insulin with an EC50of 4.6 × 10−9m. LysPro was similar. The affinity of B10 was increased 2-fold; that of EQF decreased 15-fold. Protein degradation inhibition in H4 cells was highly sensitive to insulin (EC50= 4.2 × 10−11and 1.6 × 10−10m, short- and intermediate-lived protein degradation, respectively) and analogues. Despite similar binding, LysPro was 11- to 18-fold more potent than insulin at inhibiting protein degradation. Conversely, although EQF showed lower binding to H4 cells than insulin, its action was similar. The relative binding potencies of analogues in HepG2 cells were similar to those in H4 cells. Examination of protein degradation showed insulin, LysPro, and B10 were equivalent while EQF was less potent. L6 cells showed no difference in the binding of the analogues compared with insulin, but their effect on protein degradation was similar to that seen in HepG2 cells except B10 inhibited intermediate-lived protein degradation better than insulin. These studies illustrate the complexities of cellular protein degradation and the effects of insulin. The effect of insulin and analogues on protein degradation vary significantly in different cell types and with different experimental conditions. The differences seen in the action of the analogues cannot be attributed to binding differences. Post-receptor mechanisms, including intracellular processing and degradation, must be considered.


Author(s):  
BHABANI SANKAR SATAPATHY ◽  
JNANRANJAN PANDA

Objective: Successful treatment of glioma still remains a tough challenge. The present study aims at the development and evaluation of carmustine loaded nanosize phospholipid vesicles (CNLVs) for the treatment of glioma. Methods: The experimental NLVs were developed by conventional lipid layer hydration technique and were characterized by different in vitro tools such as diffraction light scattering (DLS), zeta potential, field emission scanning electron microscopy (FESEM), cryo-transmission electron microscopy (cryo-TEM), in vitro drug loading capacity, drug release study etc. In vitro cytotoxicity and cellular uptake of the optimized drug-loaded NLVs were carried out in U87MG human glioblastoma cell line. In vivo pharmacokinetic study was conducted in Swiss albino mice. Results: DLS data showed an average vesicle diameter of 92 nm with narrow size distribution. Optimized CNLVs were spherical in shape with a smooth surface as depicted from FESEM data. Cryo-TEM study confirmed formation of unilamellar vesicles with intact outer bilayer. A reasonable drug loading of 7.8 % was reported for the optimized CNLVs along with a sustained release of CS over a 48 h study period. In vitro cytotoxicity assay revealed a considerable higher toxicity of CNLVs than free drugs in the U87MG cells. Confocal microscopy showed a satisfactory internalization of the optimized drug-loaded NLVs in the tested cell line. Pharmacokinetic data demonstrated an enhanced mean residence time of optimized CNLVs in blood than free drug. Conclusion: Results depicted the potential of experimental CNLVs for the treatment of glioma after further in vivo tests.


2018 ◽  
Vol 14 (2) ◽  
Author(s):  
PuXue Qiao ◽  
Christina Mølck ◽  
Davide Ferrari ◽  
Frédéric Hollande

AbstractMulticolor cell spatio-temporal image data have become important to investigate organ development and regeneration, malignant growth or immune responses by tracking different cell types both in vivo and in vitro. Statistical modeling of image data from common longitudinal cell experiments poses significant challenges due to the presence of complex spatio-temporal interactions between different cell types and difficulties related to measurement of single cell trajectories. Current analysis methods focus mainly on univariate cases, often not considering the spatio-temporal effects affecting cell growth between different cell populations. In this paper, we propose a conditional spatial autoregressive model to describe multivariate count cell data on the lattice, and develop inference tools. The proposed methodology is computationally tractable and enables researchers to estimate a complete statistical model of multicolor cell growth. Our methodology is applied on real experimental data where we investigate how interactions between cancer cells and fibroblasts affect their growth, which are normally present in the tumor microenvironment. We also compare the performance of our methodology to the multivariate conditional autoregressive (MCAR) model in both simulations and real data applications.


2012 ◽  
Vol 2012 ◽  
pp. 1-14 ◽  
Author(s):  
Mayra Silva Miranda ◽  
Adrien Breiman ◽  
Sophie Allain ◽  
Florence Deknuydt ◽  
Frederic Altare

One of the main features of the immune response toM. Tuberculosisis the formation of an organized structure called granuloma. It consists mainly in the recruitment at the infectious stage of macrophages, highly differentiated cells such as multinucleated giant cells, epithelioid cells and Foamy cells, all these cells being surrounded by a rim of lymphocytes. Although in the first instance the granuloma acts to constrain the infection, some bacilli can actually survive inside these structures for a long time in a dormant state. For some reasons, which are still unclear, the bacilli will reactivate in 10% of the latently infected individuals, escape the granuloma and spread throughout the body, thus giving rise to clinical disease, and are finally disseminated throughout the environment. In this review we examine the process leading to the formation of the granulomatous structures and the different cell types that have been shown to be part of this inflammatory reaction. We also discuss the differentin vivoandin vitromodels available to study this fascinating immune structure.


1997 ◽  
Vol 8 (10) ◽  
pp. 1863-1875 ◽  
Author(s):  
Wai-chi Ho ◽  
Christine Heinemann ◽  
Dolores Hangan ◽  
Shashi Uniyal ◽  
Vincent L. Morris ◽  
...  

We report herein that expression of α2β1 integrin increased human erythroleukemia K562 transfectant (KX2C2) cell movement after extravasation into liver parenchyma. In contrast, a previous study demonstrated that α2β1 expression conferred a stationary phenotype to human rhabdomyosarcoma RD transfectant (RDX2C2) cells after extravasation into the liver. We therefore assessed the adhesive and migratory function of α2β1 on KX2C2 and RDX2C2 cells using a α2β1-specific stimulatory monoclonal antibody (mAb), JBS2, and a blocking mAb, BHA2.1. In comparison with RDX2C2 cells, KX2C2 were only weakly adherent to collagen and laminin. JBS2 stimulated α2β1-mediated interaction of KX2C2 cells with both collagen and laminin resulting in increases in cell movement on both matrix proteins. In the presence of Mn2+, JBS2-stimulated adhesion on collagen beyond an optimal level for cell movement. In comparison, an increase in RDX2C2 cell movement on collagen required a reduction in its adhesive strength provided by the blocking mAb BHA2.1. Consistent with these in vitro findings, in vivo videomicroscopy revealed that α2β1-mediated postextravasation cell movement of KX2C2 cells in the liver tissue could also be stimulated by JBS2. Thus, results demonstrate that α2β1 expression can modulate postextravasation cell movement by conferring either a stationary or motile phenotype to different cell types. These findings may be related to the differing metastatic activities of different tumor cell types.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Christophe Michel Raynaud ◽  
Arash Rafii

Cell therapy has emerged as a potential therapeutic strategy in regenerative disease. Among different cell types, mesenchymal stem/stromal cells have been wildly studiedin vitro,in vivoin animal models and even used in clinical trials. However, while clinical applications continue to increase markedly, the understanding of their physiological properties and interactions raises many questions and drives the necessity of more caution and supervised strategy in their use.


Sign in / Sign up

Export Citation Format

Share Document