scholarly journals Changes in the Content of Organic Acids and Expression Analysis of Citric Acid Accumulation-Related Genes during Fruit Development of Yellow (Passiflora edulis f. flavicarpa) and Purple (Passiflora edulis f. edulis) Passion Fruits

2021 ◽  
Vol 22 (11) ◽  
pp. 5765
Author(s):  
Xiaoxue Zhang ◽  
Xiaoxia Wei ◽  
Muhammad Moaaz Ali ◽  
Hafiz Muhammad Rizwan ◽  
Binqi Li ◽  
...  

Organic acids are key components that determine the taste and flavor of fruits and play a vital role in maintaining fruit quality and nutritive value. In this study, the fruits of two cultivars of passion fruit Yellow (Passiflora edulis f. flavicarpa) and purple (Passiflora edulis f. edulis) were harvested at five different developmental stages (i.e., fruitlet, green, veraison, near-mature and mature stage) from an orchard located in subtropical region of Fujian Province, China. The contents of six organic acids were quantified using ultra-performance liquid chromatography (UPLC), activities of citric acid related enzymes were determined, and expression levels of genes involved in citric acid metabolism were measured by quantitative real-time PCR (qRT-PCR). The results revealed that citric acid was the predominant organic acid in both cultivars during fruit development. The highest citric acid contents were observed in both cultivars at green stage, which were reduced with fruit maturity. Correlation analysis showed that citrate synthase (CS), cytosolic aconitase (Cyt-ACO) and cytosolic isocitrate dehydrogenase (Cyt-IDH) may be involved in regulating citric acid biosynthesis. Meanwhile, the PeCS2, PeACO4, PeACO5 and PeIDH1 genes may play an important role in regulating the accumulation of citric acid. This study provides new insights for future elucidation of key mechanisms regulating organic acid biosynthesis in passion fruit.

Plants ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 332
Author(s):  
Zhiqiang Jiang ◽  
Qing Huang ◽  
Dongfeng Jia ◽  
Min Zhong ◽  
Junjie Tao ◽  
...  

Studies on organic acid metabolism have been mainly concentrated on the fruit, whereas, few have focused on the mechanism of high organic acids content in the fruit of Actinidia eriantha. Fruits of ‘Ganmi 6’ harvested at eleven developmental periods were used as materials. The components and content of organic acids were determined by high-performance liquid chromatography (HPLC) system, the activities of the related enzyme were detected, and gene expression levels were measured by quantitative real-time PCR (qRT-PCR). Components of ascorbic acid (AsA) and eight kinds of organic acids were detected. These results showed that quinic acid and citric acid were the main organic acids in the fruit of ‘Ganmi 6’. Correlation analysis showed that NADP-Quinate dehydrogenase (NADP-QDH), NADP-Shikimate dehydrogenase (NADP-SDH), and Cyt-Aconitase (Cyt-Aco) may be involved in regulating organic acids biosynthesis. Meanwhile, the SDH gene may play an important role in regulating the accumulation of citric acid. In this study, the activities of NADP-SDH, Mit-Aconitase (Mit-Aco), and NAD-Isocitrate dehydrogenase (NAD-IDH) were regulated by their corresponding genes at the transcriptional level. The activity of Citrate synthase (CS) may be affected by post-translational modification. Our results provided new insight into the characteristics of organic acid metabolism in the fruit of A. eriantha.


Microbiology ◽  
2009 ◽  
Vol 155 (8) ◽  
pp. 2620-2629 ◽  
Author(s):  
Aditi D. Buch ◽  
G. Archana ◽  
G. Naresh Kumar

Citric acid secretion by fluorescent pseudomonads has a distinct significance in microbial phosphate solubilization. The role of citrate synthase in citric acid biosynthesis and glucose catabolism in pseudomonads was investigated by overexpressing the Escherichia coli citrate synthase (gltA) gene in Pseudomonas fluorescens ATCC 13525. The resultant ∼2-fold increase in citrate synthase activity in the gltA-overexpressing strain Pf(pAB7) enhanced the intracellular and extracellular citric acid yields during the stationary phase, by about 2- and 26-fold, respectively, as compared to the control, without affecting the growth rate, glucose depletion rate or biomass yield. Decreased glucose consumption was paralleled by increased gluconic acid production due to an increase in glucose dehydrogenase activity. While the extracellular acetic acid yield increased in Pf(pAB7), pyruvic acid secretion decreased, correlating with an increase in pyruvate carboxylase activity and suggesting an increased demand for the anabolic precursor oxaloacetate. Activities of two other key enzymes, glucose-6-phosphate dehydrogenase and isocitrate dehydrogenase, remained unaltered, and the contribution of phosphoenolpyruvate carboxylase and isocitrate lyase to glucose catabolism was negligible. Strain Pf(pAB7) demonstrated an enhanced phosphate-solubilizing ability compared to the control. Co-expression of the Synechococcus elongatus PCC 6301 phosphoenolpyruvate carboxylase and E. coli gltA genes in P. fluorescens ATCC 13525, so as to supplement oxaloacetate for citrate biosynthesis, neither significantly affected citrate biosynthesis nor caused any change in the other physiological and biochemical parameters measured, despite approximately 1.3- and 5-fold increases in citrate synthase and phosphoenolpyruvate carboxylase activities, respectively. Thus, our results demonstrate that citrate synthase is rate-limiting in enhancing citrate biosynthesis in P. fluorescens ATCC 13525. Significantly low extracellular citrate levels as compared to the intracellular levels in Pf(pAB7) suggested a probable limitation of efficient citrate transport.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1920
Author(s):  
Yogesh Sutar ◽  
Tejabhiram Yadavalli ◽  
Sagar Kumar Paul ◽  
Sudipta Mallick ◽  
Raghuram Koganti ◽  
...  

BX795 is a TANK binding kinase-1 inhibitor that has shown excellent therapeutic activity in murine models of genital and ocular herpes infections on topical delivery. Currently, only the BX795 free base and its hydrochloride salt are available commercially. Here, we evaluate the ability of various organic acids suitable for vaginal and/or ocular delivery to form BX795 salts/cocrystals/co-amorphous systems with the aim of facilitating pharmaceutical development of BX795. We characterized BX795-organic acid coevaporates using powder X-ray diffractometry, Fourier-transform infrared spectroscopy (FT-IR), Raman spectroscopy, 1H-nuclear magnetic resonance spectroscopy, thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC) to elucidate the interaction between BX795 and various organic acids such as taurine, maleic acid, fumaric acid, tartaric acid, and citric acid. Furthermore, using human corneal epithelial cells and HeLa cells, we evaluated BX795-organic acid coevaporates for in vitro cytocompatibility and in vitro antiviral activity against herpes simplex virus-type 1 (HSV-1) and type-2 (HSV-2). Our studies indicate that BX795 forms co-amorphous systems with tartaric acid and citric acid. Interestingly, the association of organic acids with BX795 improved its thermal stability. Our in vitro cytocompatibility and in vitro antiviral studies to screen suitable BX795-organic acid coevaporates for further development show that all BX795-organic acid systems, at a concentration equivalent to 10 µM BX795, retained antiviral activity against HSV-1 and HSV-2 but showed differential cytocompatibility. Further, dose-dependent in vitro cytocompatibility and antiviral activity studies on the BX795-fumaric acid system, BX795-tartaric acid co-amorphous system, and BX795-citric acid co-amorphous system show similar antiviral activity against HSV-1 and HSV-2 compared to BX795, whereas only the BX795-citric acid co-amorphous system showed higher in vitro cytocompatibility compared to BX795.


1969 ◽  
Vol 52 (3) ◽  
pp. 646-649 ◽  
Author(s):  
J Fitelson

Abstract The official AOAC paper chromatographic method for organic acids in vanilla extract has been modified slightly for fruit juices. Fruit juices are characterized by simple major organic acid patterns, so that addition of a foreign acid or cheaper fruit juices can frequently be detected by significant changes in the major organic acid pattern. A standard acid solution, developed simultaneously, provides a rough measure of the acid spot intensities. Eight collaborators participated in the examination of the two samples submitted. Two authentic juices were also provided for comparison purposes. All collaborators correctly found the unknown cherry juice to be adulterated with citric acid. Seven of the eight collaborators also reported correctly that the unknown blackberry juice was adulterated, although the acid pattern of this juice is more complicated and the addition of citric acid is more difficult to detect. The method is recommended for adoption as official first action.


2011 ◽  
Vol 393-395 ◽  
pp. 709-712 ◽  
Author(s):  
Fu Xing Cui ◽  
Jin Feng Song ◽  
Ya Fen Guo ◽  
Jin Zhong Xu

The effects and mechanism of different concentration organic acids and organic salts solution on Al availability of dark brown forest soil were studied. It was resulted that, oxalic acid/oxalate and citric acid/citrate substantially stimulated soil Al release of dark brown forest soil. The effect of organic acids/salts on Al release would be strengthen with increasing of their concentrations.The contents of Al released from A1 horizon was higher than that from B horizon. Organic salt solutions had much higher effects than organic acid the same in concentration, i.e. citrate>citric acid, oxalate>oxalic acid. Therefore, the mechanism of organic acid/salts triggering release of soil Al was assumed to be dominated by complexation reactions of organic anions. Citric acid/ citrate had much higher effect than oxalic acid/ oxalate at same concentration to A1 and B horizons, i.e. citrate> oxalate, citric acid>oxalic acid, which was primarily related with the greater complexing capacities and dissociation constants of citric acid.


2017 ◽  
pp. 25-33 ◽  
Author(s):  
Elizabeth Quevedo ◽  
Erlinda Dizon ◽  
Florinia Merca

“Batuan” fruit (Garcinia binucao [Blco.] Choisy), an indigenous acidulant grown in the Visayas State University, Baybay City, Leyte was analyzed for its organic acid profile at different stages of maturity for the development of potential food and non-food products. The analysis of organic acid content was done using Reverse Phase-High Performance Liquid Chromatography. Organic acids in the dried, powdered “batuan” fruit samples were extracted with the mobile phase (50mM KH2PO4/ H3PO4, pH2.8). The sample extracts and organic acid standards (oxalic acid, tartaric acid, malic acid, citric acid, fumaric acid, lactic acid, acetic acid, and succinic acid) were injected to RP-HPLC under isocratic elution with the mobile phase at a flow rate of 1.0mL min-1 and using UV-vis detection at 210nm. “Batuan” fruit samples contain oxalic acid, tartaric acid, malic acid, citric acid, fumaric acid, succinic acid, acetic acid, lactic acid, and a few unidentified organic acids. Among the organic acids present, citric acid accumulated the highest in the ripe “batuan” fruit; fumaric acid, the least. Results of this study show that “batuan” fruit could be a good natural source of acidulant for food and non-food applications.


2008 ◽  
Vol 99 (13) ◽  
pp. 5561-5566 ◽  
Author(s):  
Eloı´sa Rovaris Pinheiro ◽  
Iolanda M.D.A. Silva ◽  
Luciano V. Gonzaga ◽  
Edna R. Amante ◽  
Reinaldo F. Teófilo ◽  
...  

2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Lei Yang ◽  
Tore Linde ◽  
Abeer H. Hossain ◽  
Mette Lübeck ◽  
Peter J. Punt ◽  
...  

Abstract Background In filamentous fungi, transport of organic acids across the mitochondrial membrane is facilitated by active transport via shuttle proteins. These transporters may transfer different organic acids across the membrane while taking others the opposite direction. In Aspergillus niger, accumulation of malate in the cytosol can trigger production of citric acid via the exchange of malate and citrate across the mitochondrial membrane. Several mitochondrial organic acid transporters were recently studied in A. niger showing their effects on organic acid production. Results In this work, we studied another citric acid producing fungus, Aspergillus carbonarius, and identified by genome-mining a putative mitochondrial transporter MtpA, which was not previously studied, that might be involved in production of citric acid. This gene named mtpA encoding a putative oxaloacetate transport protein was expressed constitutively in A. carbonarius based on transcription analysis. To study its role in organic acid production, we disrupted the gene and analyzed its effects on production of citric acid and other organic acids, such as malic acid. In total, 6 transformants with gene mtpA disrupted were obtained and they showed secretion of malic acid at the expense of citric acid production. Conclusion A putative oxaloacetate transporter gene which is potentially involved in organic acid production by A. carbonarius was identified and further investigated on its effects on production of citric acid and malic acid. The mtpA knockout strains obtained produced less citric acid and more malic acid than the wild type, in agreement with our original hypothesis. More extensive studies should be conducted in order to further reveal the mechanism of organic acid transport as mediated by the MtpA transporter.


RSC Advances ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 6919-6927 ◽  
Author(s):  
Hongzhen Luo ◽  
Panli Zheng ◽  
Fang Xie ◽  
Rongling Yang ◽  
Lina Liu ◽  
...  

Lignin-derived phenolics enhance solvent and organic acid biosynthesis in butanol fermentation by Clostridium acetobutylicum ATCC 824.


2019 ◽  
Vol 99 (1) ◽  
pp. 92-99
Author(s):  
Xiaoyan Yang ◽  
Xiangwei Chen ◽  
Xitian Yang

Phosphorus (P) fertilizers are added to improve the soil P fertility, but the rate of P release can greatly influence its availability. Organic acids are effective in the release of inorganic P (Pi), but the contribution of each Pi fraction is not well understood. This study reported the transformation rate of P and solubility of Pi fractions induced by organic acids. Path analysis was utilized to explore the direct and indirect effects of Pi fractions on the amount of total Pi (TPi) solubilized. Results showed that the P release was initially rapid, followed by a slower release that lasted up to 2160 h, and the Elovich equation was the best-fitted kinetic equation to estimate the transformation rate of available P. The amount of TPi-solubilized by oxalic and citric acids tended to increase with increasing organic acid concentrations. Oxalic acid exhibited a lower TPi-solubility capability than citric acid when the organic acid concentration was ≤1 mmol L−1, whereas citric acid was higher at ≥1.5 mmol L−1. The Al-P-solubilized had the highest content of studied fractions, and path analysis revealed that the Al-P-solubilized exhibited a significant direct effect on TPi-solubilized. Thus, Al-P is a potential P source in black soil.


Sign in / Sign up

Export Citation Format

Share Document