scholarly journals CD40 Cross-Linking Induces Migration of Renal Tumor Cell through Nuclear Factor of Activated T Cells (NFAT) Activation

2021 ◽  
Vol 22 (16) ◽  
pp. 8871
Author(s):  
Paola Pontrelli ◽  
Margherita Gigante ◽  
Federica Spadaccino ◽  
Giuseppe Stefano Netti ◽  
Marilisa Saldarelli ◽  
...  

CD40 crosslinking plays an important role in regulating cell migration, adhesion and proliferation in renal cell carcinoma (RCC). CD40/CD40L interaction on RCC cells activates different intracellular pathways but the molecular mechanisms leading to cell scattering are not yet clearly defined. Aim of our study was to investigate the main intracellular pathways activated by CD40 ligation and their specific involvement in RCC cell migration. CD40 ligation increased the phosphorylation of extracellular signal-regulated kinase (ERK), c-Jun NH (2)-terminal kinase (JNK) and p38 MAPK. Furthermore, CD40 crosslinking activated different transcriptional factors on RCC cell lines: AP-1, NFkB and some members of the Nuclear Factor of Activated T cells (NFAT) family. Interestingly, the specific inhibition of NFAT factors by cyclosporine A, completely blocked RCC cell motility induced by CD40 ligation. In tumor tissue, we observed a higher expression of NFAT factors and in particular an increased activation and nuclear migration of NFATc4 on RCC tumor tissues belonging to patients that developed metastases when compared to those who did not. Moreover, CD40-CD40L interaction induced a cytoskeleton reorganization and increased the expression of integrin β1 on RCC cell lines, and this effect was reversed by cyclosporine A and NFAT inhibition. These data suggest that CD40 ligation induces the activation of different intracellular signaling pathways, in particular the NFATs factors, that could represent a potential therapeutic target in the setting of patients with metastatic RCC.

2006 ◽  
Vol 175 (1) ◽  
pp. 87-97 ◽  
Author(s):  
Mara Fornaro ◽  
Peter M. Burch ◽  
Wentian Yang ◽  
Lei Zhang ◽  
Claire E. Hamilton ◽  
...  

The formation of multinucleated myofibers is essential for the growth of skeletal muscle. The nuclear factor of activated T cells (NFAT) promotes skeletal muscle growth. How NFAT responds to changes in extracellular cues to regulate skeletal muscle growth remains to be fully defined. In this study, we demonstrate that mice containing a skeletal muscle–specific deletion of the tyrosine phosphatase SHP-2 (muscle creatine kinase [MCK]–SHP-2 null) exhibited a reduction in both myofiber size and type I slow myofiber number. We found that interleukin-4, an NFAT-regulated cytokine known to stimulate myofiber growth, was reduced in its expression in skeletal muscles of MCK–SHP-2–null mice. When SHP-2 was deleted during the differentiation of primary myoblasts, NFAT transcriptional activity and myotube multinucleation were impaired. Finally, SHP-2 coupled myotube multinucleation to an integrin-dependent pathway and activated NFAT by stimulating c-Src. Thus, SHP-2 transduces extracellular matrix stimuli to intracellular signaling pathways to promote skeletal muscle growth.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 4474-4474
Author(s):  
Peter Haviernik ◽  
Mathew L Lesniewski ◽  
Richard Patrick Weitzel ◽  
Mary J Laughlin

Abstract Nuclear Factor of Activated T-cells 1 (NFAT1) is a member of the NFAT family of transcription factors (NFAT1-NFAT5) that has been shown to play an important role in regulating genes related to T-cell expansion, differentiation, and apoptosis. As murine NFAT1 knockout mice exhibit lymphoproliferative disease, we hypothesize that aberrant expression of NFAT1 may impact cell cycle dysregulation underlying T-ALL pathogenesis. Four T-ALL cell lines – including 3 mature T-cell lines: CCRF-CEM (no clear chromosomal abnormalities), Jurkat (karyotype 46, XY, -2, -18, del(2) (p21p23), del(18) (p11.2)), Loucy (translocation t(16;20)(p12;q13), and p53 overexpression), and one immature T-cell line MOLT-4 (hypertetraploid chromosomes and 6q-, t(7;7)) (ATCC Manassas, VA), established from peripheral blood of T-ALL patients were analyzed and compared to normal resting adult CD4+ T-cells. Flow cytometry analysis was performed as previously described including CD34, CD38, HLA-DR, CD3, CD4, CD8, CD2, and CD7 to determine maturation stage; MOLT-4 being the most primitive and Jurkat the most mature. Methods: Growth curves were determined and proliferation potential was determined using MTT (3-[4, 5-dimethylthiazol-2-yl]-2, 5-diphenyltetrazolium bromide) assay. The cell cycle phase distribution was assessed by flow cytometry analysis of Hoechst 33342-stained cells. mRNA expression was examined by quantitative rtPCR using TaqMan probes (ABI) on cDNA derived from TRIzol purified total RNA. For stimulation, we used 2 μM ionomycin treatment for 3 hours. Proteins were prepared as whole cell extract from radioimmunoprecipitation assay (RIPA) buffer lysed cells. Protein expression was evaluated by Western blotting analysis of 20 μg of proteins using anti-NFAT1 antibody (BD Biosciences) and anti-γ-tubulin antibody (Sigma) as a loading control. Transient transfection of GFP vector or plasmid containing the wild-type or constitutively active NFAT1 gene along with the GFP gene was performed by either electroporation (Amaxa) or Lipofectamine 2000 (Invitrogen). GFP positive cells were sorted by FACSAria sorter. Results: Despite their different maturation states, all cell lines (except Loucy) have similar high growth rates. However, the cell cycle distribution analysis of Hoechst-stained cells revealed a lower proportion of Loucy cells in the G0/G1 phase (35% vs. 48–51% for the other 3 cell lines) and a higher proportion in the G2/M phase (37% vs. 19–24% for the other 3 cell lines). In addition, Loucy cells have a higher rate of apoptosis as measured by Annexin V staining. Analysis of NFAT1 expression demonstrated decreased levels of NFAT1 mRNA (30-70-fold) and protein (2-10-fold) in these cell lines compared to resting adult peripheral blood CD4+ T lymphocytes. Figure Figure Moreover, ionomycin stimulation of the calcium-calcineurin pathway in these cells revealed aberrant activation of NFAT1. There was no dephosphorylated or activated NFAT1 in MOLT-4 and Jurkat cells; in contrast, dephosphorylated or activated NFAT1 was degraded in CCRF-CEM and Loucy. As NFAT1 is implicated in the regulation of cell cycle and apoptosis, the expression of cell cycle and apoptosis genes was measured by qrtPCR. Consistent with the negative regulatory role of NFAT1 in cell cycle, T-ALL cells expressing low level of NFAT1 showed upregulation of cyclin A2 (20-80-fold), cyclin E2 (5-8-fold) and CDK4 (3-7-fold) as well as downregulation of p21Cip1 (20-470-fold) and p27Kip1 (20-180-fold). In addition, these cells also demonstrated downregulation of the expression of the pro-apoptotic gene Nur77 (2.5-10-fold). Introduction of exogenous NFAT1 gene into Jurkat cells resulted in decreased proliferation rate to 64% and 42%, for wild-type and constitutively active form of NFAT1 gene, respectively, compare to the cells transfected with the empty GFP vector. Conclusion: Aberrant expression of NFAT1 contributes to leukemogenesis via dysregulation of proliferation and apoptosis. Targeted NFAT1 expression may be an effective therapeutic strategy in T-ALL.


2018 ◽  
Vol 15 (4) ◽  
pp. 302-313 ◽  
Author(s):  
Fabiana Blanco ◽  
Suvi E Heinonen ◽  
Erika Gurzeler ◽  
Lisa M Berglund ◽  
Anna-Maria Dutius Andersson ◽  
...  

Aims: Despite vast clinical experience linking diabetes and atherosclerosis, the molecular mechanisms leading to accelerated vascular damage are still unclear. Here, we investigated the effects of nuclear factor of activated T-cells inhibition on plaque burden in a novel mouse model of type 2 diabetes that better replicates human disease. Methods & Results: IGF-II/LDLR–/–ApoB100/100 mice were generated by crossbreeding low-density lipoprotein receptor–deficient mice that synthesize only apolipoprotein B100 (LDLR–/–ApoB100/100) with transgenic mice overexpressing insulin-like growth factor-II in pancreatic β cells. Mice have mild hyperglycaemia and hyperinsulinaemia and develop complex atherosclerotic lesions. In vivo treatment with the nuclear factor of activated T-cells blocker A-285222 for 4 weeks reduced atherosclerotic plaque area and degree of stenosis in the brachiocephalic artery of IGF-II/LDLR–/–ApoB100/100 mice, as assessed non-invasively using ultrasound biomicroscopy prior and after treatment, and histologically after termination. Treatment had no impact on plaque composition (i.e. muscle, collagen, macrophages). The reduced plaque area could not be explained by effects of A-285222 on plasma glucose, insulin or lipids. Inhibition of nuclear factor of activated T-cells was associated with increased expression of atheroprotective NOX4 and of the anti-oxidant enzyme catalase in aortic vascular smooth muscle cells. Conclusion: Targeting the nuclear factor of activated T-cells signalling pathway may be an attractive approach for the treatment of diabetic macrovascular complications.


2021 ◽  
pp. annrheumdis-2020-219335
Author(s):  
Emma Garcia-Melchor ◽  
Giacomo Cafaro ◽  
Lucy MacDonald ◽  
Lindsay A N Crowe ◽  
Shatakshi Sood ◽  
...  

ObjectivesIncreasing evidence suggests that inflammatory mechanisms play a key role in chronic tendon disease. After observing T cell signatures in human tendinopathy, we explored the interaction between T cells and tendon stromal cells or tenocytes to define their functional contribution to tissue remodelling and inflammation amplification and hence disease perpetuation.MethodsT cells were quantified and characterised in healthy and tendinopathic tissues by flow cytometry (FACS), imaging mass cytometry (IMC) and single cell RNA-seq. Tenocyte activation induced by conditioned media from primary damaged tendon or interleukin-1β was evaluated by qPCR. The role of tenocytes in regulating T cell migration was interrogated in a standard transwell membrane system. T cell activation (cell surface markers by FACS and cytokine release by ELISA) and changes in gene expression in tenocytes (qPCR) were assessed in cocultures of T cells and explanted tenocytes.ResultsSignificant quantitative differences were observed in healthy compared with tendinopathic tissues. IMC showed T cells in close proximity to tenocytes, suggesting tenocyte–T cell interactions. On activation, tenocytes upregulated inflammatory cytokines, chemokines and adhesion molecules implicated in T cell recruitment and activation. Conditioned media from activated tenocytes induced T cell migration and coculture of tenocytes with T cells resulted in reciprocal activation of T cells. In turn, these activated T cells upregulated production of inflammatory mediators in tenocytes, while increasing the pathogenic collagen 3/collagen 1 ratio.ConclusionsInteraction between T cells and tenocytes induces the expression of inflammatory cytokines/chemokines in tenocytes, alters collagen composition favouring collagen 3 and self-amplifies T cell activation via an auto-regulatory feedback loop. Selectively targeting this adaptive/stromal interface may provide novel translational strategies in the management of human tendon disorders.


Sign in / Sign up

Export Citation Format

Share Document