scholarly journals Cyclopentanone Derivative Attenuates Memory Impairment by Inhibiting Amyloid Plaques Formation in the 5xFAD Mice

2021 ◽  
Vol 22 (17) ◽  
pp. 9559
Author(s):  
Rahim Ullah ◽  
Gowhar Ali ◽  
Ajmal Khan ◽  
Sajjad Ahmad ◽  
Ahmed Al-Harrasi

Alzheimer’s disease (AD) is a chronic neurodegenerative disorder. This study was designed to investigate the effects of cyclopentanone derivative i.e., 2-(hydroxyl-(3-nitrophenyl)methyl)cyclopentanone (3NCP) on behavior, amyloid β (Aβ) plaque deposition, and βAPP cleaving enzyme-1 (BACE-1) expression in the 5xFAD mouse brain. In this study, computational studies were conducted to predict the binding mode of the 3NCP with target sites of the β-secretase. In vivo studies were performed on the 5xFAD mice model of AD using different behavioral test models like light/dark box, elevated plus maze (EPM), and the Barnes maze tests for the assessment of anxiety, spatial learning and memory. The thioflavin-S staining, immunohistochemistry (IHC), and RT-PCR studies were carried out to find the effect of the 3NCP on the β-amyloid plaques formation and BACE-1 expression. The results of the computational studies showed that the 3NCP has excellent binding affinities for beta-secretase. The light/dark box study depicted that the 3NCP does not cause anxiety. The 3NCP treatment effects in the EPM and Barnes maze tests showed a significant effect on learning and memory. Furthermore, the results of the thioflavin staining and IHC revealed that the 3NCP significantly reduced the formation of the beta-amyloid plaques in brain tissues. Moreover, the RT-PCR study showed that 3NCP significantly reduced the BACE-1 expression in the brain. Conclusively, the results of the current study demonstrate that the 3NCP may be a potential candidate for AD treatment in the future.

Antioxidants ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1321
Author(s):  
Jin-Ho Kim ◽  
Dong-Kyun Lim ◽  
Yoo-Hun Suh ◽  
Keun-A Chang

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder resulting in cognitive decline or dementia, the number of patients with AD is continuously increasing. Although a lot of great progress has been made in research and development of AD therapeutics, there is no fundamental cure for this disease yet. This study demonstrated the memory-improving effects of Cuban policosanol (PCO) in 5xFAD mice, which is an animal model of AD. Following 4-months of treatment with PCO in 5xFAD mice, we found that the number of amyloid plaques decreased in the brain compared to the vehicle-treated 5xFAD mice. Long-term PCO treatment in 5xFAD mice resulted in the reduction of gliosis and abnormal inflammatory cytokines level (interleukin [IL]-1β, IL-6, and tumor necrosis factor [TNF]-α) in the cortex and hippocampus. Levels of lipid peroxide (4-hydroxynonenal [4-HNE]) and superoxide dismutase (SOD1 and SOD2) levels were also recoverd in the brains of PCO-treated 5xFAD mice. Notably, PCO administration reduced memory deficits in the passive avoidance test, as well as synaptic loss (PSD-95, synaptophysin) in 5xFAD mice. Collectively, we identified the potential effects of PCO as a useful supplement to delay or prevent AD progression by inhibiting the formation of Aβ plaques in the brain.


2021 ◽  
Vol 72 (2) ◽  
pp. 5-10
Author(s):  
Violeta Jovanović ◽  
Jelica Despotović ◽  
Mario Balo ◽  
Ivan Zaletel ◽  
Sanja Despotović ◽  
...  

Introduction: Alzheimer's disease is the most common neurodegenerative disorder, characterized by the formation of amyloid plaques and the neurofibrillary tangles in the brain of an ill person, leading to neuronal damage and loss. Activation of astrocytes and astrogliosis occurs along with this process. Due to ethical limitations in working with human tissue, numerous transgenic animal models have been developed to study the pathogenesis of these processes. Early Ab deposition is observed in the cortex and the hippocampus. Aim: This study aimed to determine the difference in the presence of GFAP positive cells in the hippocampus between transgenic 5xFAD mice aged 36 weeks and their corresponding controls. Material and Methods: The 5xFAD mice model of Alzheimer's disease was used, characterized by early formation of amyloid plaques but without the presence of neurofibrillar tangles. Transgenic and control animals were sacrificed at 36 weeks of age. The visualization of GFAP-positive cells in the hippocampus of their brains was done by using immunohistochemistry and antibody for glial fibrillary acidic protein - GFAP, the major marker of astrocytes. Quantification of immuno-reactivity was done by using the Icy software system. Results: There was a statistically significant difference in the expression of GFAP in the dentate gyrus and the granular zone of the hippocampus between the transgenic and control group at 36 weeks of age, while the significant change in the CA1-3 regions was not observed between investigated groups. Conclusion: Obtained results confirm the involvement of astrogliosis in the pathophysiology of Alzheimer's disease and indicate an earlier occurrence of astrogliosis in the dentate gyrus and granular zone, in relation to other regions of the hippocampus, in the 36-week-old 5xFAD mice.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Eugene Kim ◽  
Davide Di Censo ◽  
Mattia Baraldo ◽  
Camilla Simmons ◽  
Ilaria Rosa ◽  
...  

AbstractAmyloid plaques are a hallmark of Alzheimer’s disease (AD) that develop in its earliest stages. Thus, non-invasive detection of these plaques would be invaluable for diagnosis and the development and monitoring of treatments, but this remains a challenge due to their small size. Here, we investigated the utility of manganese-enhanced MRI (MEMRI) for visualizing plaques in transgenic rodent models of AD across two species: 5xFAD mice and TgF344-AD rats. Animals were given subcutaneous injections of MnCl2 and imaged in vivo using a 9.4 T Bruker scanner. MnCl2 improved signal-to-noise ratio but was not necessary to detect plaques in high-resolution images. Plaques were visible in all transgenic animals and no wild-types, and quantitative susceptibility mapping showed that they were more paramagnetic than the surrounding tissue. This, combined with beta-amyloid and iron staining, indicate that plaque MR visibility in both animal models was driven by plaque size and iron load. Longitudinal relaxation rate mapping revealed increased manganese uptake in brain regions of high plaque burden in transgenic animals compared to their wild-type littermates. This was limited to the rhinencephalon in the TgF344-AD rats, while it was most significantly increased in the cortex of the 5xFAD mice. Alizarin Red staining suggests that manganese bound to plaques in 5xFAD mice but not in TgF344-AD rats. Multi-parametric MEMRI is a simple, viable method for detecting amyloid plaques in rodent models of AD. Manganese-induced signal enhancement can enable higher-resolution imaging, which is key to visualizing these small amyloid deposits. We also present the first in vivo evidence of manganese as a potential targeted contrast agent for imaging plaques in the 5xFAD model of AD.


2021 ◽  
pp. 1-17
Author(s):  
Alvaro Miranda ◽  
Enrique Montiel ◽  
Henning Ulrich ◽  
Cristian Paz

Alzheimer’s disease (AD) is associated with marked atrophy of the cerebral cortex and accumulation of amyloid plaques and neurofibrillary tangles. Amyloid plaques are formed by oligomers of amyloid-β (Aβ) in the brain, with a length of 42 and 40 amino acids. α-secretase cleaves amyloid-β protein precursor (AβPP) producing the membrane-bound fragment CTFα and the soluble fragment sAβPPα with neuroprotective activity; β-secretase produces membrane-bound fragment CTFβ and a soluble fragment sAβPPβ. After α-secretase cleavage of AβPP, γ-secretase cleaves CTFα to produce the cytoplasmic fragment AICD and P3 in the non-amyloidogenic pathway. CTFβ is cleaved by γ-secretase producing AICD as well as Aβ in amyloidogenic pathways. In the last years, the study of natural products and synthetic compounds, such as α-secretase activity enhancers, β-secretase inhibitors (BACE-1), and γ-secretase activity modulators, have been the focus of pharmaceuticals and researchers. Drugs were improved regarding solubility, blood-brain barrier penetration, selectivity, and potency decreasing Aβ42. In this regard, BACE-1 inhibitors, such as Atabecestat, NB-360, Umibecestat, PF-06751979, Verubecestat, LY2886721, Lanabecestat, LY2811376, and Elenbecestat, were submitted to phase I-III clinical trials. However, inhibition of Aβ production did not recover cognitive functions or reverse the disease. Novel strategies are being developed, aiming at a partial reduction of Aβ production, such as the development of γ-secretase modulators or α-secretase enhancers. Such therapeutic tools shall focus on slowing down or minimizing the progression of neuronal damage. Here, we summarize structures and the activities of the latest compounds designed for AD treatment, with remarkable in vitro, in vivo, and clinical phase activities.


2021 ◽  
Vol 17 (12) ◽  
pp. 1072-1087
Author(s):  
Alexis S. Huang ◽  
Benjamin C.K. Tong ◽  
Aston J. Wu ◽  
Xiaotong Chen ◽  
Sravan G. Sreenivasmurthy ◽  
...  

: Alzheimer’s disease (AD) is the most common neurodegenerative disorder. Although the pathological hallmarks of AD have been identified, the derived therapies cannot effectively slow down or stop disease progression; hence, it is likely that other pathogenic mechanisms are involved in AD pathogenesis. Intracellular calcium (Ca2+) dyshomeostasis has been consistently observed in AD patients and numerous AD models and may emerge prior to the development of amyloid plaques and neurofibrillary tangles. Thus, intracellular Ca2+ disruptions are believed to play an important role in AD development and could serve as promising therapeutic intervention targets. : One of the disrupted intracellular Ca2+ signaling pathways manifested in AD is attenuated storeoperated Ca2+ entry (SOCE). SOCE is an extracellular Ca2+ entry mechanism mainly triggered by intracellular Ca2+ store depletion. Maintaining normal SOCE function not only provides a means for the cell to replenish ER Ca2+ stores but also serves as a cellular signal that maintains normal neuronal functions, including excitability, neurogenesis, neurotransmission, synaptic plasticity, and gene expression. However, normal SOCE function is diminished in AD, resulting in disrupted neuronal spine stability and synaptic plasticity and the promotion of amyloidogenesis. Mounting evidence suggests that rectifying diminished SOCE in neurons may intervene with the progression of AD. In this review, the mechanisms of SOCE disruption and the associated pathogenic impacts on AD will be discussed. We will also highlight the potential therapeutic targets or approaches that may help ameliorate SOCE deficits for AD treatment.


2020 ◽  
Vol 15 (3) ◽  
pp. 251-264
Author(s):  
Hira Rafi ◽  
Fahad Ahmad ◽  
Javaria Anis ◽  
Ruba Khan ◽  
Hamna Rafiq ◽  
...  

Aim: Endogenous agmatine has a significant role in learning and memory processes as a neurotransmitter. Various studies described the physiological role of endogenous agmatine in learning and memory of multiple cognitive tasks suggesting elevated levels of agmatine during the learning process in the rat brain. Dietary intake of choline showed correlation with cognitive functions in human subjects and treatment with choline supplements validated the ability to diminish learning and cognitive impairment dementias. Methods: 36 Albino rats were equally divided into three groups previously: a) control-water, b) Test I - AlCl3 (100 mg/Kg body weight), and c) Test II - Forced swim stress (FSS) for 14 days. On the next day of AlCl3 and FSS last administration, animals were allocated into further three groups and received the following treatments: a. water was given orally to the control group, b. Agmatine (100 mg/Kg Body Weight) group, and c. Choline (100 mg/Kg Body Weight) group for the next 14 days. Behaviors were assessed in Light/Dark Box, Open Field, Novel Object Recognition Test (NOR), T Maze Test, and Morris Water Maze Test. Results: Animals administered with agmatine demonstrated increased time spent in bright areas of light/dark box and square crossed while improved spatial memory in Morris water maze and T maze test and enhanced discrimination of novel object in NOR were observed in learning and memory paradigms along with choline. Conclusion: The present study determines that agmatine at the dose of (100 mg/kg body weight) attenuates memory and cognitive impairment in comparison with choline supplements.


2016 ◽  
Vol 9 (1) ◽  
pp. 170
Author(s):  
I.U Yarube ◽  
J.O. Ayo ◽  
R.A. Magaji ◽  
I.A. Umar ◽  
A.W., Alhassan ◽  
...  

Plants ◽  
2019 ◽  
Vol 8 (7) ◽  
pp. 231 ◽  
Author(s):  
Archana N Panche ◽  
Sheela Chandra ◽  
AD Diwan

Natural products derived from plants play a vital role in the discovery of new drug candidates, and these are used for novel therapeutic drug development. Andrographis paniculata and Spilanthes paniculata are used extensively as medicinal herbs for the treatment of various ailments, and are reported to have neuroprotective properties. β-amyloid is a microscopic brain protein whose significant aggregation is detected in mild cognitive impairment and Alzheimer’s disease (AD) brains. The accumulation of β-amyloid disrupts cell communication and triggers inflammation by activating immune cells, leading to neuronal cell death and cognitive disabilities. The proteases acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and beta secretase-1 (BACE-1) have been reported to be correlated with the synthesis and growth of β-amyloid plaques in the brains of AD patients. In the present study, the phenolic compounds from A. paniculata and S. paniculata that have been reported in the literature were selected for the current investigation. Furthermore, we employed molecular docking and molecular dynamics studies of the phenolic compounds with the proteins AChE, BChE, and BACE-1 in order to evaluate the binding characteristics and identify potent anti-amyloid agents against the neurodegenerative diseases such as AD. In this investigation, we predicted three compounds from A. paniculata with maximum binding affinities with cholinesterases and BACE-1. The computational investigations predicted that these compounds follow the rule of five. We further evaluated these molecules for in vitro inhibition activity against all the enzymes. In the in vitro investigations, 3,4-di-o-caffeoylquinic acid (5281780), apigenin (5280443), and 7-o-methylwogonin (188316) were found to be strong inhibitors of AChE, BChE, and BACE-1. These findings suggest that these compounds can be potent multi-target inhibitors of the proteases that might cumulatively work and inhibit the initiation and formation of β-amyloid plaques, which is a prime cause of neurotoxicity and dementia. According to our knowledge, these findings are the first report on natural compounds isolated from A. paniculata as multi-target potent inhibitors and anti-amyloid agents.


Sign in / Sign up

Export Citation Format

Share Document