scholarly journals C9ORF72 Repeat Expansion Affects the Proteome of Primary Skin Fibroblasts in ALS

2021 ◽  
Vol 22 (19) ◽  
pp. 10385
Author(s):  
Marta Lualdi ◽  
Adeena Shafique ◽  
Edoardo Pedrini ◽  
Luisa Pieroni ◽  
Viviana Greco ◽  
...  

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by progressive degeneration of the corticospinal motor neurons, which ultimately leads to death. The repeat expansion in chromosome 9 open reading frame 72 (C9ORF72) represents the most common genetic cause of ALS and it is also involved in the pathogenesis of other neurodegenerative disorders. To offer insights into C9ORF72-mediated pathogenesis, we quantitatively analyzed the proteome of patient-derived primary skin fibroblasts from ALS patients carrying the C9ORF72 mutation compared with ALS patients who tested negative for it. Differentially expressed proteins were identified, used to generate a protein-protein interaction network and subjected to a functional enrichment analysis to unveil altered molecular pathways. ALS patients were also compared with patients affected by frontotemporal dementia carrying the C9ORF72 repeat expansion. As a result, we demonstrated that the molecular pathways mainly altered in fibroblasts (e.g., protein homeostasis) mirror the alterations observed in C9ORF72-mutated neurons. Moreover, we highlighted novel molecular pathways (nuclear and mitochondrial transports, vesicle trafficking, mitochondrial bioenergetics, glucose metabolism, ER-phagosome crosstalk and Slit/Robo signaling pathway) which might be further investigated as C9ORF72-specific pathogenetic mechanisms. Data are available via ProteomeXchange with the identifier PXD023866.

2018 ◽  
Vol 19 (10) ◽  
pp. 3137 ◽  
Author(s):  
Anna Konopka ◽  
Julie Atkin

Amyotrophic lateral sclerosis (ALS) is a fatal, rapidly progressing neurodegenerative disease affecting motor neurons, and frontotemporal dementia (FTD) is a behavioural disorder resulting in early-onset dementia. Hexanucleotide (G4C2) repeat expansions in the gene encoding chromosome 9 open reading frame 72 (C9orf72) are the major cause of familial forms of both ALS (~40%) and FTD (~20%) worldwide. The C9orf72 repeat expansion is known to form abnormal nuclei acid structures, such as hairpins, G-quadruplexes, and R-loops, which are increasingly associated with human diseases involving microsatellite repeats. These configurations form during normal cellular processes, but if they persist they also damage DNA, and hence are a serious threat to genome integrity. It is unclear how the repeat expansion in C9orf72 causes ALS, but recent evidence implicates DNA damage in neurodegeneration. This may arise from abnormal nucleic acid structures, the greatly expanded C9orf72 RNA, or by repeat-associated non-ATG (RAN) translation, which generates toxic dipeptide repeat proteins. In this review, we detail recent advances implicating DNA damage in C9orf72-ALS. Furthermore, we also discuss increasing evidence that targeting these aberrant C9orf72 confirmations may have therapeutic value for ALS, thus revealing new avenues for drug discovery for this disorder.


2013 ◽  
Vol 5 (208) ◽  
pp. 208ra149-208ra149 ◽  
Author(s):  
D. Sareen ◽  
J. G. O'Rourke ◽  
P. Meera ◽  
A. K. M. G. Muhammad ◽  
S. Grant ◽  
...  

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Zhongyuan Lin ◽  
Yimin Wang ◽  
Shiqing Lin ◽  
Decheng Liu ◽  
Guohui Mo ◽  
...  

Abstract Background Irritable bowel syndrome (IBS) is the most common functional gastrointestinal disease characterized by chronic abdominal discomfort and pain. The mechanisms of abdominal pain, as a relevant symptom, in IBS are still unclear. We aimed to explore the key genes and neurobiological changes specially involved in abdominal pain in IBS. Methods Gene expression data (GSE36701) was downloaded from Gene Expression Omnibus database. Fifty-three rectal mucosa samples from 27 irritable bowel syndrome with diarrhea (IBS-D) patients and 40 samples from 21 healthy volunteers as controls were included. Differentially expressed genes (DEGs) between two groups were identified using the GEO2R online tool. Functional enrichment analysis of DEGs was performed on the DAVID database. Then a protein–protein interaction network was constructed and visualized using STRING database and Cytoscape. Results The microarray analysis demonstrated a subset of genes (CCKBR, CCL13, ACPP, BDKRB2, GRPR, SLC1A2, NPFF, P2RX4, TRPA1, CCKBR, TLX2, MRGPRX3, PAX2, CXCR1) specially involved in pain transmission. Among these genes, we identified GRPR, NPFF and TRPA1 genes as potential biomarkers for irritating abdominal pain of IBS patients. Conclusions Overexpression of certain pain-related genes (GRPR, NPFF and TRPA1) may contribute to chronic visceral hypersensitivity, therefore be partly responsible for recurrent abdominal pain or discomfort in IBS patients. Several synapses modification and biological process of psychological distress may be risk factors of IBS.


2021 ◽  
Vol 28 (1) ◽  
pp. 20-33
Author(s):  
Lydia-Eirini Giannakou ◽  
Athanasios-Stefanos Giannopoulos ◽  
Chrissi Hatzoglou ◽  
Konstantinos I. Gourgoulianis ◽  
Erasmia Rouka ◽  
...  

Haemophilus influenzae (Hi), Moraxella catarrhalis (MorCa) and Pseudomonas aeruginosa (Psa) are three of the most common gram-negative bacteria responsible for human respiratory diseases. In this study, we aimed to identify, using the functional enrichment analysis (FEA), the human gene interaction network with the aforementioned bacteria in order to elucidate the full spectrum of induced pathogenicity. The Human Pathogen Interaction Database (HPIDB 3.0) was used to identify the human proteins that interact with the three pathogens. FEA was performed via the ToppFun tool of the ToppGene Suite and the GeneCodis database so as to identify enriched gene ontologies (GO) of biological processes (BP), cellular components (CC) and diseases. In total, 11 human proteins were found to interact with the bacterial pathogens. FEA of BP GOs revealed associations with mitochondrial membrane permeability relative to apoptotic pathways. FEA of CC GOs revealed associations with focal adhesion, cell junctions and exosomes. The most significantly enriched annotations in diseases and pathways were lung adenocarcinoma and cell cycle, respectively. Our results suggest that the Hi, MorCa and Psa pathogens could be related to the pathogenesis and/or progression of lung adenocarcinoma via the targeting of the epithelial cellular junctions and the subsequent deregulation of the cell adhesion and apoptotic pathways. These hypotheses should be experimentally validated.


2021 ◽  
Author(s):  
Weihao Chen ◽  
Zhifeng Li ◽  
Wei Sun ◽  
Mingxing Chu

Abstract Background:In sheep, FecB is the essential biomarker of the fertility, previous researches have provided a detailed insight on the regulation involved estrus phase and FecB in the reproductive-related tissues including hypothalamus, pituitary, and ovary. However, as the host of embryo development and connection between the ovary and the uterus, little is known about the interaction between mRNAs and lncRNAs in sheep oviduct. In the present study, RNA-Seq was performed to identify the transcriptomic profiles of mRNAs and lncRNAs in oviduct during estrus phase of sheep with FecBBB/++ genotypes.Results:In total, 21,863 lncRNAs and 43,674 mRNAs were identified, 57 DE lncRNAs and 637 DE mRNAs were revealed in the comparisons between follicular phase and luteal phase, 26 DE lncRNAs and 421 DE lncRNAs were revealed in the comparisons between FecB BB genotype and FecB ++ genotype. Functional enrichment analysis suggested that GO and KEGG terms related to reproduction such as SAGA complex, ATP-binding cassette (ABC), Nestin, and Hippo signalling pathway. DE-interaction network suggested that LNC_018420 maybe the key regulators related to embryo development in sheep oviduct.Conclusion:This was the first study to reveal the transcriptomic profiles of mRNAs and lncRNAs in the oviduct of FecB BB/++ sheep at estrus phase using RNA-Seq. Our findings can provide new understanding on the molecular mechanisms of mRNAs and lncRNAs underlying sheep embryo development and also opening new lines of investigation in sheep reproduction.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Haoran Jia ◽  
Zibo Zhang ◽  
Ehsan Sadeghnezhad ◽  
Qianqian Pang ◽  
Shangyun Li ◽  
...  

Abstract Background Grape buds and leaves are directly associated with the physiology and metabolic activities of the plant, which is monitored by epigenetic modifications induced by environment and endogenous factors. Methylation is one of the epigenetic regulators that could be involved in DNA levels and affect gene expression in response to stimuli. Therefore, changes of gene expression profile in leaves and bud through inhibitors of DNA methylation provide a deep understanding of epigenetic effects in regulatory networks. Results In this study, we carried out a transcriptome analysis of ‘Kyoho’ buds and leaves under 5-azacytidine (5-azaC) exposure and screened a large number of differentially expressed genes (DEGs). GO and KEGG annotations showed that they are mainly involved in photosynthesis, flavonoid synthesis, glutathione metabolism, and other metabolic processes. Functional enrichment analysis also provided a holistic perspective on the transcriptome profile when 5-azaC bound to methyltransferase and induced demethylation. Enrichment analysis of transcription factors (TFs) also showed that the MYB, C2H2, and bHLH families are involved in the regulation of responsive genes under epigenetic changes. Furthermore, hormone-related genes have also undergone significant changes, especially gibberellin (GA) and abscisic acid (ABA)-related genes that responded to bud germination. We also used protein-protein interaction network to determine hub proteins in response to demethylation. Conclusions These findings provide new insights into the establishment of molecular regulatory networks according to how methylation as an epigenetic modification alters transcriptome patterns in bud and leaves of grape.


Biomolecules ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 417
Author(s):  
Chuanxi Peng ◽  
Xing Wang ◽  
Tianyu Feng ◽  
Rui He ◽  
Mingcai Zhang ◽  
...  

MicroRNAs (miRNAs), the post-transcriptional gene regulators, are known to play an important role in plant development. The identification of differentially expressed miRNAs could better help us understand the post-transcriptional regulation that occurs during maize internode elongation. Accordingly, we compared the expression of MIRNAs between fixed internode and elongation internode samples and classified six differentially expressed MIRNAs as internode elongation-responsive miRNAs including zma-MIR160c, zma-MIR164b, zma-MIR164c, zma-MIR168a, zma-MIR396f, and zma-MIR398b, which target mRNAs supported by transcriptome sequencing. Functional enrichment analysis for predictive target genes showed that these miRNAs were involved in the development of internode elongation by regulating the genes respond to hormone signaling. To further reveal how miRNA affects internode elongation by affecting target genes, the miRNA–mRNA–PPI (protein and protein interaction) network was constructed to summarize the interaction of miRNAs and these target genes. Our results indicate that miRNAs regulate internode elongation in maize by targeting genes related to cell expansion, cell wall synthesis, transcription, and regulatory factors.


2020 ◽  
Vol 9 (2) ◽  
pp. LMT30
Author(s):  
Chuanli Ren ◽  
Weixiu Sun ◽  
Xu Lian ◽  
Chongxu Han

Aim: To screen and identify key genes related to the development of smoking-induced lung adenocarcinoma (LUAD). Materials & methods: We obtained data from the GEO chip dataset GSE31210. The differentially expressed genes were screened by GEO2R. The protein interaction network of differentially expressed genes was constructed by STRING and Cytoscape. Finally, core genes were screened. The overall survival time of patients with the core genes was analyzed by Kaplan–Meier method. Gene ontology and Kyoto encyclopedia of genes and genomes bioaccumulation was calculated by DAVID. Results: Functional enrichment analysis indicated that nine key genes were actively involved in the biological process of smoking-related LUAD. Conclusion: 23 core genes and nine key genes among them were correlated with adverse prognosis of LUAD induced by smoking.


2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Wenqing Nai ◽  
Diane Threapleton ◽  
Jingbo Lu ◽  
Kewei Zhang ◽  
Hongyuan Wu ◽  
...  

Abstract Atherosclerosis is the primary cause of cardiovascular events and its molecular mechanism urgently needs to be clarified. In our study, atheromatous plaques (ATH) and macroscopically intact tissue (MIT) sampled from 32 patients were compared and an integrated series of bioinformatic microarray analyses were used to identify altered genes and pathways. Our work showed 816 genes were differentially expressed between ATH and MIT, including 443 that were up-regulated and 373 that were down-regulated in ATH tissues. GO functional-enrichment analysis for differentially expressed genes (DEGs) indicated that genes related to the “immune response” and “muscle contraction” were altered in ATHs. KEGG pathway-enrichment analysis showed that up-regulated DEGs were significantly enriched in the “FcεRI-mediated signaling pathway”, while down-regulated genes were significantly enriched in the “transforming growth factor-β signaling pathway”. Protein-protein interaction network and module analysis demonstrated that VAV1, SYK, LYN and PTPN6 may play critical roles in the network. Additionally, similar observations were seen in a validation study where SYK, LYN and PTPN6 were markedly elevated in ATH. All in all, identification of these genes and pathways not only provides new insights into the pathogenesis of atherosclerosis, but may also aid in the development of prognostic and therapeutic biomarkers for advanced atheroma.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Yang Shao ◽  
Bin Liang ◽  
Fei Long ◽  
Shu-Juan Jiang

Lung cancer is the leading cause of cancer death and its incidence is ranked high in men and women worldwide. Non-small-cell lung cancer (NSCLC) adenocarcinoma is one of the most frequent histological subtypes of lung cancer. The aberration profile and the molecular mechanism driving its progression are the key for precision therapy of lung cancer, while the screening of biomarkers is essential to the precision early diagnosis and treatment of the cancer. In this work, we applied a bioinformatics method to analyze the dysregulated interaction network of microRNA-mRNA in NSCLC, based on both the gene expression data and the microRNA-gene regulation network. Considering the properties of the substructure and their biological functions, we identified the putative diagnostic biomarker microRNAs, some of which have been reported on the PubMed citations while the rest, that is, miR-204-5p, miR-567, miR-454-3p, miR-338-3p, and miR-139-5p, were predicted as the putative novel microRNA biomarker for the diagnosis of NSCLC adenocarcinoma. They were further validated by functional enrichment analysis of their target genes. These findings deserve further experimental validations for future clinical application.


Sign in / Sign up

Export Citation Format

Share Document