scholarly journals Parkinson Disease Protein 7 (PARK7) Is Related to the Ability of Mammalian Sperm to Undergo In Vitro Capacitation

2021 ◽  
Vol 22 (19) ◽  
pp. 10804
Author(s):  
Sandra Recuero ◽  
Ariadna Delgado-Bermúdez ◽  
Yentel Mateo-Otero ◽  
Estela Garcia-Bonavila ◽  
Marc Llavanera ◽  
...  

Parkinson disease protein 7 (PARK7) is a multifunctional protein known to be involved in the regulation of sperm motility, mitochondrial function, and oxidative stress response in mammalian sperm. While ROS generation is needed to activate the downstream signaling pathways required for sperm to undergo capacitation, oxidative stress has detrimental effects for sperm cells and a precise balance between ROS levels and antioxidant activity is needed. Considering the putative antioxidant role of PARK7, the present work sought to determine whether this protein is related to the sperm ability to withstand in vitro capacitation. To this end, and using the pig as a model, semen samples were incubated in capacitation medium for 300 min; the acrosomal exocytosis was triggered by the addition of progesterone after 240 min of incubation. At each relevant time point (0, 120, 240, 250, and 300 min), sperm motility, acrosome and plasma membrane integrity, membrane lipid disorder, mitochondrial membrane potential, intracellular calcium and ROS were evaluated. In addition, localization and protein levels of PARK7 were also assessed through immunofluorescence and immunoblotting. Based on the relative content of PARK7, two groups of samples were set. As early as 120 min of incubation, sperm samples with larger PARK7 content showed higher percentages of viable and acrosome-intact sperm, lipid disorder and superoxide levels, and lower intracellular calcium levels when compared to sperm samples with lower PARK7. These data suggest that PARK7 could play a role in preventing sperm from undergoing premature capacitation, maintaining sperm viability and providing a better ability to keep ROS homeostasis, which is needed to elicit sperm capacitation. Further studies are required to elucidate the antioxidant properties of PARK7 during in vitro capacitation and acrosomal exocytosis of mammalian sperm, and the relationship between PARK7 and sperm motility.

2020 ◽  
Vol 21 (9) ◽  
pp. 3255
Author(s):  
Marc Yeste ◽  
Marc Llavanera ◽  
Yentel Mateo-Otero ◽  
Jaime Catalán ◽  
Sergi Bonet ◽  
...  

The objective of the present study was to determine the physiological role of voltage-gated hydrogen channels 1 (HVCN1 channels) during in vitro capacitation of pig spermatozoa. Sperm samples from 20 boars were incubated in capacitating medium for 300 minutes (min) in the presence of 2-guanidino benzimidazole (2-GBI), a specific HVCN1-channel blocker, added either at 0 min or after 240 min of incubation. Control samples were incubated in capacitating medium without the inhibitor. In all samples, acrosomal exocytosis was triggered with progesterone after 240 min of incubation. Sperm viability, sperm motility and kinematics, acrosomal exocytosis, membrane lipid disorder, intracellular calcium levels and mitochondrial membrane potential were evaluated after 0, 60, 120, 180, 240, 250, 270 and 300 min of incubation. While HVCN1-blockage resulted in altered sperm viability, sperm motility and kinematics and reduced mitochondrial membrane potential as compared to control samples, at any blocker concentration and incubation time, it had a non-significant effect on intracellular Ca2+ levels determined through Fluo3-staining. The effects on acrosomal exocytosis were only significant in blocked samples at 0 min, and were associated with increased membrane lipid disorder and Ca2+ levels of the sperm head determined through Rhod5-staining. In conclusion, HVCN1 channels play a crucial role in the modulation of sperm motility and kinematics, and in Ca2+ entrance to the sperm head.


2016 ◽  
Vol 10 (14) ◽  
pp. 278-288 ◽  
Author(s):  
de Albuquerque Oliveira Aline ◽  
Isabel Linhares Maria ◽  
Jos eacute Maia Chaves Filho Adriano ◽  
Ricardo Vasconcelos Rios Emiliano ◽  
Nayane de Carvalho Lima Camila ◽  
...  

Pharmaceutics ◽  
2018 ◽  
Vol 10 (4) ◽  
pp. 212 ◽  
Author(s):  
Eliana Pintus ◽  
Martin Kadlec ◽  
Marija Jovičić ◽  
Markéta Sedmíková ◽  
José Ros-Santaella

Aminoguanidine is a selective inhibitor of the inducible nitric oxide synthase (iNOS) and a scavenger of reactive oxygen species (ROS). Numerous studies have shown the antioxidant properties of aminoguanidine in several cell lines, but the in vitro effects of this compound on spermatozoa under oxidative stress are unknown. In this study, we tested the hypothesis that aminoguanidine may protect against the detrimental effects of oxidative stress in boar spermatozoa. For this purpose, sperm samples were incubated with a ROS generating system (Fe2+/ascorbate) with or without aminoguanidine supplementation (10, 1, and 0.1 mM). Our results show that aminoguanidine has powerful antioxidant capacity and protects boar spermatozoa against the deleterious effects of oxidative stress. After 2 h and 3.5 h of sperm incubation, the samples treated with aminoguanidine showed a significant increase in sperm velocity, plasma membrane and acrosome integrity together with a reduced lipid peroxidation in comparison with control samples (p < 0.001). Interestingly, except for the levels of malondialdehyde, the samples treated with 1 mM aminoguanidine did not differ or showed better performance than control samples without Fe2+/ascorbate. The results from this study provide new insights into the application of aminoguanidine as an in vitro therapeutic agent against the detrimental effects of oxidative stress in semen samples.


2011 ◽  
Vol 4 (1) ◽  
pp. 20-26 ◽  
Author(s):  
Ružena Sotníková ◽  
Jana Nedelčevová ◽  
Jana Navarová ◽  
Viera Nosáľová ◽  
Katarína Drábiková ◽  
...  

Protection of the vascular endothelium in experimental situationsOne of the factors proposed as mediators of vascular dysfunction observed in diabetes is the increased generation of reactive oxygen species (ROS). This provides support for the use of antioxidants as early and appropriate pharmacological intervention in the development of late diabetic complications. In streptozotocin (STZ)-induced diabetes in rats we observed endothelial dysfuction manifested by reduced endothelium-dependent response to acetylcholine of the superior mesenteric artery (SMA) and aorta, as well as by increased endothelaemia. Changes in endothelium-dependent relaxation of SMA were induced by injury of the nitric oxide radical (·NO)-signalling pathway since the endothelium-derived hyperpolarising factor (EDHF)-component of relaxation was not impaired by diabetes. The endothelial dysfunction was accompanied by decreased ·NO bioavailabity as a consequence of reduced activity of eNOS rather than its reduced expression. The results obtained using the chemiluminiscence method (CL) argue for increased oxidative stress and increased ROS production. The enzyme NAD(P)H-oxidase problably participates in ROS production in the later phases of diabetes. Oxidative stress was also connected with decreased levels of reduced glutathione (GSH) in the early phase of diabetes. After 10 weeks of diabetes, adaptational mechanisms probably took place because GSH levels were not changed compared to controls. Antioxidant properties of SMe1EC2 foundin vitrowere partly confirmedin vivo.Administration of SMe1EC2 protected endothelial function. It significantly decreased endothelaemia of diabetic rats and improved endothelium-dependent relaxation of arteries, slightly decreased ROS-production and increased bioavailability of ·NO in the aorta. Further studies with higher doses of SMe1EC2 may clarify the mechanism of its endothelium-protective effectin vivo.


2021 ◽  
Author(s):  
Małgorzata Olszowy-Tomczyk ◽  
Łukasz Paprotny ◽  
Agnieszka Celejewska ◽  
Dorota Szewczak ◽  
Dorota Wianowska

Abstract The imbalance between the production of Reactive Oxygen Species (ROS) and their sequestration promotes the formation of so-called oxidative stress conditions which are considered crucial in the aging process and development of many human diseases. Glutathione plays an essential role in the antioxidative barricade against ROS. Its role in the detoxification process of xenobiotics and carcinogen is also known. However, there are no comparative studies on the antioxidant properties of both biological samples and glutathione as well as the change in these properties as a result of exposure to various stress factors. This paper fills this gap comparing the antioxidant activity of serum and plasma samples of the known glutathione content with the activity of glutathione itself assessed by the different methods. In addition, it reveals a significant role of environmental xenobiotics in oxidative stress and differentiates the stress induced by different groups of drugs, among which the greatest one has been demonstrated for antiarrhythmic drugs and cytostatics. More importantly, it proves that human plasma is more resistant to stress factors and N-acetylcysteine clearly promotes the extension of antioxidant properties of both the plasma and serum samples. The latter conclusion is consistent with the implied preventive and/or supportive action of this drug against SARS-CoV-2.


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Marco Biagi ◽  
Daria Noto ◽  
Maddalena Corsini ◽  
Giulia Baini ◽  
Daniela Cerretani ◽  
...  

This study was aimed at evaluating in vitro the effects of a 75% v/v ethanolic extract of leaves of Castanea sativa Mill. (var. Bastarda Rossa, Mount Amiata, Tuscany, Italy) on ejaculated human sperm. Total polyphenols and total flavonoids contained in the extract were determined by a colorimetric assay and HPLC-DAD. The DPPH test and electrochemistry were utilized to study the antioxidant activity of the extract. Swim-up-selected sperm from 8 healthy men were treated with the C. sativa leaf extract at different dilutions (1 : 100, 1 : 200, and 1 : 500), and sperm motility was assessed following the WHO guidelines. Swim-up-selected spermatozoa were incubated with 100 μM H2O2 to induce lipid peroxidation (LPO) and with H2O2 and the leaf extract (1 : 100, 1 : 200, and 1 : 500) to test the antioxidant activity of the extract. The levels of LPO were determined by measuring malondialdehyde (MDA) concentrations. The treated samples were also analyzed by transmission electron microscopy (TEM) for ultrastructural evaluation. The chemical analysis showed that one-third ca. of the polyphenols in the C. sativa extract were made up of flavonoids, with hyperoside present in high concentration. A good antioxidant activity was demonstrated by both the DPPH test and electrochemical analysis. The C. sativa leaf extract did not decrease sperm motility at all tested dilutions. Treatment with H2O2 alone caused a significant increment in MDA levels (P=0.006993), while the treatment with H2O2 plus C. sativa extract diluted to 1 : 100 and 1 : 200 significantly reduced MDA levels (P=0.01476 and P=0.01571, respectively), with respect to H2O2 alone. TEM analysis confirmed the protective effect of the extract on damage induced by LPO, in particular that occurring at the plasma membrane level. The C. sativa leaf extract could be used in human and farm animal protocols for gamete handling, such as techniques of assisted reproduction and cryopreservation of semen, all conditions in which oxidative stress is exacerbated.


Nutrients ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 1774
Author(s):  
Christian Bleilevens ◽  
Benedict M. Doorschodt ◽  
Tamara Fechter ◽  
Tim Grzanna ◽  
Alexander Theißen ◽  
...  

Systemic and localized ischemia and reperfusion injury remain clinically relevant issues after organ transplantation and contribute to organ dysfunctions, among which acute kidney injury is one of the most common. An in vitro test-circuit for normothermic perfusion of porcine kidneys after warm ischemia was used to investigate the antioxidant properties of vitamin C during reperfusion. Vitamin C is known to enhance microcirculation, reduce endothelial permeability, prevent apoptosis, and reduce inflammatory reactions. Based on current evidence about the pleiotropic effects of vitamin C, we hypothesize that the antioxidant properties of vitamin C might provide organ-protection and improve the kidney graft function in this model of ischemia and reperfusion. Methods: 10 porcine kidneys from 5 Landrace pigs were perfused in vitro for 6 h. For each experiment, both kidneys of one animal were perfused simultaneously with a 1:1 mixture of autologous blood and modified Ringer’s solution at 38 °C and 75 mmHg continuous perfusion pressure. One kidney was treated with a 500 mg bolus injection of vitamin C into the perfusate, followed by continuous infusion of 60 mg/h vitamin C. In the control test circuit, an equal volume of Ringer’s solution was administered as a placebo. Perfusate samples were withdrawn at distinct points in time during 6 h of perfusion for blood gas analyses as well as measurement of serum chemistry, oxidative stress and antioxidant capacity. Hemodynamic parameters and urine excretion were monitored continuously. Histological samples were analyzed to detect tubular- and glomerular-injury. Results: vitamin C administration to the perfusate significantly reduced oxidative stress (49.8 ± 16.2 vs. 118.6 ± 23.1 mV; p = 0.002) after 6 h perfusion, and increased the antioxidant capacity, leading to red blood cell protection and increased hemoglobin concentrations (5.1 ± 0.2 vs. 3.9 ± 0.6 g/dL; p = 0.02) in contrast to placebo treatment. Kidney function was not different between the groups (creatinine clearance vit C: 2.5 ± 2.1 vs. placebo: 0.5 ± 0.2 mL/min/100 g; p = 0.9). Hypernatremia (187.8 ± 4.7 vs. 176.4 ± 5.7 mmol/L; p = 0.03), and a lower, but not significant decreased fractional sodium excretion (7.9 ± 2 vs. 27.7 ± 15.3%; p = 0.2) were observed in the vitamin C group. Histological analysis did not show differences in tubular- and glomerular injury between the groups. Conclusion: Vitamin C treatment increased the antioxidant capacity of in vitro perfused kidney grafts, reduced oxidative stress, preserved red blood cells as oxygen carrier in the perfusate, but did not improve clinically relevant parameters like kidney function or attenuate kidney damage. Nevertheless, due to its antioxidative properties vitamin C might be a beneficial supplement to clinical kidney graft perfusion protocols.


2020 ◽  
Vol 287 (1918) ◽  
pp. 20191917 ◽  
Author(s):  
Javier Pineda-Pampliega ◽  
Amparo Herrera-Dueñas ◽  
Ellis Mulder ◽  
José I. Aguirre ◽  
Ursula Höfle ◽  
...  

Telomere length (TL) and shortening is increasingly shown to predict variation in survival and lifespan, raising the question of what causes variation in these traits. Oxidative stress is well known to accelerate telomere attrition in vitro , but its importance in vivo is largely hypothetical. We tested this hypothesis experimentally by supplementing white stork ( Ciconia ciconia ) chicks with antioxidants. Individuals received either a control treatment, or a supply of tocopherol (vitamin E) and selenium, which both have antioxidant properties. The antioxidant treatment increased the concentration of tocopherol for up to two weeks after treatment but did not affect growth. Using the telomere restriction fragment technique, we evaluated erythrocyte TL and its dynamics. Telomeres shortened significantly over the 21 days between the baseline and final sample, independent of sex, mass, size and hatching order. The antioxidant treatment significantly mitigated shortening rate of average TL (−31% in shorter telomeres; percentiles 10th, 20th and 30th). Thus, our results support the hypothesis that oxidative stress shortens telomeres in vivo .


2019 ◽  
Vol 5 (4) ◽  
Author(s):  
Emma Gabriela Antonio Marcos ◽  
O. Monroy Hermosillo ◽  
E. Cortés Barberena ◽  
E. Rodríguez Tobón ◽  
J. G. Rivera Martínez ◽  
...  

C-phycocyanin (C-PC) is a biocompound extracted from Arthrospira maxima. It is a chromophore-protein complex, with antioxidant properties. Its ability to prevent oxidative stress allows for diverse medical applications. This study evaluates the use of C-PC as a protein supplement and an antioxidant for in-vitro sperm preservation in a short-term extender. Viability, progressive motility, DNA damage and percentage of reactive oxygen species where assessed in Swine (Sus scrofa domesticus) sperm stored for up to 72 hours at 4 °C. Treatments with C-PC had the following concentrations: 0, 34.5, 69, 138 and 207 μg mL−1. Progressive motility and percentage of sperm with undamaged DNA were unchanged (20%) after storage for 48 hours using the 138 μg mL C-PC concentration−1.


Molecules ◽  
2020 ◽  
Vol 25 (19) ◽  
pp. 4371
Author(s):  
Weronika Adach ◽  
Jerzy Żuchowski ◽  
Barbara Moniuszko-Szajwaj ◽  
Malgorzata Szumacher-Strabel ◽  
Anna Stochmal ◽  
...  

Background: The Paulownia Clone in Vitro 112, known as oxytree or oxygen tree, is a hybrid clone of the species Paulownia elongata and Paulownia fortunei (Paulowniaceae). The oxytree is a fast-growing hybrid cultivar that can adapt to wide variations in edaphic and climate conditions. In this work, Paulownia Clone in Vitro 112 leaves were separated into an extract and four fractions (A–D) differing in chemical content in order to investigate their chemical content using LC-MS analysis. The extract and fractions were also evaluated for their anticoagulant and antioxidant properties in a human plasma in vitro. Results: The Paulownia leaf extract contained mainly phenolic compounds (e.g., verbascoside), small amounts of iridoids (e.g., aucubin or 7-hydroxytometoside) and triterpenoids (e.g., maslinic acid) were also detected. Our results indicate that the extract and fractions have different effects on oxidative stress in human plasma treated with H2O2/Fe in vitro, which could be attributed to differences in their chemical content. For example, the extract and all the fractions, at the two highest concentrations of 10 and 50 µg/mL, significantly inhibited the plasma lipid peroxidation induced by H2O2/Fe. Fractions C and D, at all tested concentrations (1–50 µg/mL) were also found to protect plasma proteins against H2O2/Fe-induced carbonylation. The positive effects of fraction C and D were dependent on the dose. Conclusions: The extract and all four fractions, but particularly fractions C and D, which are rich in phenolic compounds, are novel sources of antioxidants, with an inhibitory effect on oxidative stress in human plasma in vitro. Additionally, the antioxidant potential of fraction D may be associated with triterpenoids.


Sign in / Sign up

Export Citation Format

Share Document