scholarly journals A Sheathed Spike Gene, TaWUS-like Inhibits Stem Elongation in Common Wheat by Regulating Hormone Levels

2021 ◽  
Vol 22 (20) ◽  
pp. 11210
Author(s):  
Xuemei Si ◽  
Wanxin Wang ◽  
Ke Wang ◽  
Yunchuan Liu ◽  
Jiangping Bai ◽  
...  

The elongation and development of wheat (Triticum aestivum L.) stem play an important role in plant architecture. The shortened stem would result in a sheathed spike and a low yield in crops. Unraveling the molecular mechanisms underlying a sheathed spike would be beneficial for plant architecture and yield improvement. We identified a novel gene, TaWUS-like (WUSCHEL-related homeobox-like), which regulated sheathed spike and plant architecture in wheat. The plant height of overexpression transgenic lines was significantly decreased and the spike was not completely elongated and enclosed in flag leaf sheaths. Moreover, the increase in tiller angle resulted in loose plant architecture and lower yield. The statistical and cytological analysis demonstrated that the length of the uppermost and secondary internode was significantly shortened, especially the uppermost internode which was only half the length of the wild-type. The size of parenchyma cells was obviously reduced and cell length on the longitudinal section was elongated insufficiently compared with wild-type. The analysis of hormone content showed that there was a lack of gibberellin A 3 (GA3) in internodes but a higher brassinosteroid (BR) content. TaWUS-like may inhibit the synthesis of GA3 and/or BR, thus affecting the function of signal transduction of these hormones, which further caused stem shortening and plant dwarfing in wheat.

2021 ◽  
Author(s):  
Xuemei Si ◽  
Wanxin Wang ◽  
Ke Wang ◽  
Yunchuan Liu ◽  
Jiangping Bai ◽  
...  

Abstract Background: The elongation and development of wheat (Triticum aestivum L.) stem play an important role in plant architecture. Shortened stem would result in sheathed spike and low yield in crops. To elucidate the molecular mechanisms underlying sheathed spike would be helpful for plant architecture and yield. Results: We found a novel gene, TaWUS-like(WUSCHEL-related homeobox like), which regulated sheathed spike and plant architecture in wheat. The plant height of overexpression transgenic lines were significantly decreased and the spike was not completely elongated and enclosed in flag leaf sheaths. Besides, the increase of tiller angle resulted in loose plant architecture and lower yield. The statistical and cytological analysis demonstrated that the length of the uppermost and secondary internode was significantly shortened, especially the uppermost internode was only half length of wild-type. The parenchyma cells obviously reduced and elongated insufficiently. The analysis of hormone content showed that there was a lack of GA3 in internodes but a higher BR content. Conclusions: TaWUS-like may inhibit the synthesis of GA and/or BR and affect the function of signal transduction of these hormones, which further caused stem shortening and plant dwarfing in wheat.


2021 ◽  
Author(s):  
Luhua Li ◽  
Chang An ◽  
Zhongni Wang ◽  
Fumin Xiong ◽  
Yingxi Wang ◽  
...  

Abstract Anthocyanidin synthase (ANS) is involved in the synthesis of anthocyanins, which are important phytonutrients because of their beneficial effects on human health. Here, we identified ANS-6D of purple-colored Triticum aestivum L. cv. Guizi 1 (Gz) that is involved in leaf senescence through the abscisic acid (ABA) mediated chlorophyll degradation pathway in tobacco. After characterizing the leaf-senescence phenotype in GzANS-6D overexpression (OxGzANS-6D) lines, we found that the increased anthocyanin accumulation and decreased chlorophyll content in OxGzANS-6D lines were closely correlated with the expression levels of anthocyanin synthesis-related structural genes and senescence marker genes, as well as the accumulation of reactive oxygen species. The endogenous ABA content increased and ethylene content decreased in OxGzANS-6D transgenic lines compared with wild type. Additionally, the levels of the abscisic acid-responsive transcription factors ABF1 and ABF2, as well as those of chlorophyll degradation-related genes (PAO, NYC, SGR and CHL), were significantly higher in OxGzANS-6D transgenic lines than in wild type. Furthermore, we found that GzABF1 and NtABF1 binds to the promoter of GzANS-6D, and NtABF2 binds to the promoter of NtSGR. Thus, GzANS-6D participated in leaf senescence through ABA-mediated chlorophyll degradation, and ABF1/2 play important role in GzANS-6D functions.


2019 ◽  
Vol 20 (3) ◽  
pp. 652 ◽  
Author(s):  
Wen-Jing Yang ◽  
Yong-Tao Du ◽  
Yong-Bin Zhou ◽  
Jun Chen ◽  
Zhao-Shi Xu ◽  
...  

Melatonin (N-acetyl-5-methoxytryptamine) is involved in many developmental processes and responses to various abiotic stresses in plants. Most of the studies on melatonin focus on its functions and physiological responses in plants, while its regulation mechanism remains unknown. Caffeic acid 3-O-methyltransferase (COMT) functions at a key step of the biosynthesis process of melatonin. In this study, a COMT-like gene, TaCOMT (Traes_1AL_D9035D5E0.1) was identified in common wheat (Triticum aestivum L.). Transient transformation in wheat protoplasts determined that TaCOMT is localized in cytoplasm. TaCOMT in wheat was induced by drought stress, gibberellin (GA)3 and 3-Indoleacetic acid (IAA), but not by ABA. In TaCOMT transgenic Arabidopsis, melatonin contents were higher than that in wild type (WT) plants. Under D-Mannitol treatment, the fresh weight of the transgenic Arabidopsis was significantly higher than WT, and transgenic lines had a stronger root system compared to WT. Drought tolerance assays in pots showed that the survival rate of TaCOMT-overexpression lines was significantly higher than that of WT lines. this phenotype was similar to that the WT lines treated with melatonin under drought condition. In addition, the TaCOMT transgenic lines had higher proline content and lower malondialdehyde (MDA) content compared to WT lines after drought treatment. These results indicated that overexpression of the wheat TaCOMT gene enhances drought tolerance and increases the content of melatonin in transgenic Arabidopsis. It could be one of the potential genes for agricultural applications.


2001 ◽  
Vol 52 (12) ◽  
pp. 1235 ◽  
Author(s):  
R. K. Coleman ◽  
G. S. Gill ◽  
G. J. Rebetzke

As weeds develop resistance to a broad range of herbicides, wheat (Triticum aestivum L.) cultivars with superior weed competitive capacity are needed to complement integrated weed management strategies. In this study, agronomic and morphological traits that enable wheat to compete effectively with weeds were identified. Halberd, Cranbrook, and 161 Cranbrook x Halberd doubled haploid (DH) lines were examined in field experiments conducted over two growing seasons. The weed species Lolium rigidum L. (annual ryegrass) was sown in strips perpendicular to the direction of wheat seeding. Various traits were measured during each season with competitive ability determined by both percent loss in wheat grain yield and suppression of ryegrass growth. Width of leaf 2, canopy height, and light interception at early stem elongation (Z31), and tiller number, height at maturity, and days to anthesis were important for competitive ability in 1999. In the previous year, length of leaf 2 and size of the flag leaf contributed to competitiveness. Seasonal effects appeared to have some impact on the relative contribution of crop traits to competitive ability. The morphological traits involved in maintaining grain yield differed from those that contributed to the suppression of ryegrass growth. Development of the Cranbrook x Halberd chromosomal linkage map enabled the putative identification of quantitative trait loci (QTL) associated with competitive ability in the DH population. Many of the QTL were mapped to similar positions in both years. Further, several traits, including time to anthesis, flag leaf size, height at stem elongation, and the size of the first 2 leaves, were mapped to similar positions on chromosomes 2B and 2D. Narrow-sense heritabilities on an entry-mean basis were typically high within each year for traits associated with weed competitive ability. However, large genotype x year interactions reduced these heritabilities, making genetic gain through phenotypic selection difficult. The identification of QTL repeatable over seasons indicates the potential for marker-assisted selection in a wheat breeding program selecting for improved grain yield and weed competitiveness.


Plants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 219
Author(s):  
Alexey Pigolev ◽  
Dmitry Miroshnichenko ◽  
Sergey Dolgov ◽  
Tatyana Savchenko

A well-developed root system is an important characteristic of crop plants, which largely determines their productivity, especially under conditions of water and nutrients deficiency. Being Poaceous, wheat has more than one seminal root. The number of grown seminal roots varies in different wheat accessions and is regulated by environmental factors. Currently, the molecular mechanisms determining the number of germinated seminal roots remain poorly understood. The analysis of the root system development in germinating seeds of genetically modified hexaploid wheat plants with altered activity of jasmonate biosynthesis pathway and seeds exogenously treated with methyl jasmonate revealed the role of jasmonates in the regulation of sixth seminal root development. This regulatory effect strongly depends on the jasmonate concentration and the duration of the exposure to this hormone. The maximum stimulatory effect of exogenously applied methyl jasmonate on the formation of the sixth seminal root was achieved at 200 μM concentration after 48 h of treatment. Further increase in concentration and exposure time does not increase the stimulating effect. While 95% of non-transgenic plants under non-stress conditions possess five or fewer seminal roots, the number of plants with developed sixth seminal root reaches up to 100% when selected transgenic lines are treated with methyl jasmonate.


Author(s):  
Thomas I Pérez-Gianmarco ◽  
Alan D Severini ◽  
Fernanda G González

Abstract Coupling anthesis date to the best environment is critical for wheat (Triticum aestivum L.) adaptation and yield potential. Development to anthesis is controlled by temperature and photoperiod. Response to photoperiod is chiefly modulated by Ppd-1 genes, but their effect on the quantitative response of i) time to anthesis, and ii) pre-anthesis phases to photoperiod remains largely unknown. A photoperiod-sensitive spring cultivar, Paragon, and near-isogenic lines of it carrying different combinations of Ppd-1a insensitivity alleles were tested under a wide range of photoperiods, including switches in photoperiod at the onset of stem elongation. Using multimodel inference we found that Ppd-1a alleles reduced photoperiod sensitivity from a) emergence to anthesis and b) emergence to onset of stem elongation, both in a less than additive manner, while threshold photoperiod and intrinsic earliness were unaffected. Sensitivity to current photoperiod from onset of stem elongation to flag leaf and from then to anthesis was milder than for previous phases and was not related to variability in Ppd-1. But ‘memory’ effects of previously experienced photoperiod on the duration from onset of stem elongation to flag leaf, was. The characterisation and quantification provided here of Ppd-1 allelic combinations’ effects on development should help increase genotype-to-phenotype models’ accuracy for predicting wheat phenology.


1972 ◽  
Vol 25 (3) ◽  
pp. 455 ◽  
Author(s):  
JW Patrick

During the phase of stem extension in plants of Triticum aestivum L. cv. Stewart, the distribution of assimilated 14C appeared to be related to sink size, proximity to the source, and a canalizing effect imposed by the vascular system on the movement between leaves. Evidence was found of a greater resistance to export from a leaf in the upward than in the downward direction and this is consistent with the observed arrangement of the sieve elements linking the bundles at the nodes. The cross� sectional area of the phloem did not appear to impose a limitation on the amount of material transported to the apex. The bulk of carbon imported by a growing leaf was consistently transported from the second lamina below. Import from other leaves continued after the emergence of a lamina and accounted for some 80% of its final dry weight and 50% of that in the attached sheath. The elongating inter-nodes 81ther side of the leaf formed large sinks for its photosynthate. Ear growth, prior to its emergence, was supported by the upper three leaves. After emergence the flag leaf was the main supplier.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Qian-Hao Zhu ◽  
Warwick Stiller ◽  
Philippe Moncuquet ◽  
Stuart Gordon ◽  
Yuman Yuan ◽  
...  

Abstract Fiber mutants are unique and valuable resources for understanding the genetic and molecular mechanisms controlling initiation and development of cotton fibers that are extremely elongated single epidermal cells protruding from the seed coat of cottonseeds. In this study, we reported a new fuzzless-tufted cotton mutant (Gossypium hirsutum) and showed that fuzzless-tufted near-isogenic lines (NILs) had similar agronomic traits and a higher ginning efficiency compared to their recurrent parents with normal fuzzy seeds. Genetic analysis revealed that the mutant phenotype is determined by a single incomplete dominant locus, designated N5. The mutation was fine mapped to an approximately 250-kb interval containing 33 annotated genes using a combination of bulked segregant sequencing, SNP chip genotyping, and fine mapping. Comparative transcriptomic analysis using 0–6 days post-anthesis (dpa) ovules from NILs segregating for the phenotypes of fuzzless-tufted (mutant) and normal fuzzy cottonseeds (wild-type) uncovered candidate genes responsible for the mutant phenotype. It also revealed that the flanking region of the N5 locus is enriched with differentially expressed genes (DEGs) between the mutant and wild-type. Several of those DEGs are members of the gene families with demonstrated roles in cell initiation and elongation, such as calcium-dependent protein kinase and expansin. The transcriptome landscape of the mutant was significantly reprogrammed in the 6 dpa ovules and, to a less extent, in the 0 dpa ovules, but not in the 2 and 4 dpa ovules. At both 0 and 6 dpa, the reprogrammed mutant transcriptome was mainly associated with cell wall modifications and transmembrane transportation, while transcription factor activity was significantly altered in the 6 dpa mutant ovules. These results imply a similar molecular basis for initiation of lint and fuzz fibers despite certain differences.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Madhavi Latha Gandla ◽  
Niklas Mähler ◽  
Sacha Escamez ◽  
Tomas Skotare ◽  
Ogonna Obudulu ◽  
...  

Abstract Background Bioconversion of wood into bioproducts and biofuels is hindered by the recalcitrance of woody raw material to bioprocesses such as enzymatic saccharification. Targeted modification of the chemical composition of the feedstock can improve saccharification but this gain is often abrogated by concomitant reduction in tree growth. Results In this study, we report on transgenic hybrid aspen (Populus tremula × tremuloides) lines that showed potential to increase biomass production both in the greenhouse and after 5 years of growth in the field. The transgenic lines carried an overexpression construct for Populus tremula × tremuloides vesicle-associated membrane protein (VAMP)-associated protein PttVAP27-17 that was selected from a gene-mining program for novel regulators of wood formation. Analytical-scale enzymatic saccharification without any pretreatment revealed for all greenhouse-grown transgenic lines, compared to the wild type, a 20–44% increase in the glucose yield per dry weight after enzymatic saccharification, even though it was statistically significant only for one line. The glucose yield after enzymatic saccharification with a prior hydrothermal pretreatment step with sulfuric acid was not increased in the greenhouse-grown transgenic trees on a dry-weight basis, but increased by 26–50% when calculated on a whole biomass basis in comparison to the wild-type control. Tendencies to increased glucose yields by up to 24% were present on a whole tree biomass basis after acidic pretreatment and enzymatic saccharification also in the transgenic trees grown for 5 years on the field when compared to the wild-type control. Conclusions The results demonstrate the usefulness of gene-mining programs to identify novel genes with the potential to improve biofuel production in tree biotechnology programs. Furthermore, multi-omic analyses, including transcriptomic, proteomic and metabolomic analyses, performed here provide a toolbox for future studies on the function of VAP27 proteins in plants.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Guiming Deng ◽  
Fangcheng Bi ◽  
Jing Liu ◽  
Weidi He ◽  
Chunyu Li ◽  
...  

AbstractBackgroundBanana plant height is an important trait for horticultural practices and semi-dwarf cultivars show better resistance to damages by wind and rain. However, the molecular mechanisms controlling the pseudostem height remain poorly understood. Herein, we studied the molecular changes in the pseudostem of a semi-dwarf banana mutant Aifen No. 1 (Musaspp. Pisang Awak sub-group ABB) as compared to its wild-type dwarf cultivar using a combined transcriptome and metabolome approach.ResultsA total of 127 differentially expressed genes and 48 differentially accumulated metabolites were detected between the mutant and its wild type. Metabolites belonging to amino acid and its derivatives, flavonoids, lignans, coumarins, organic acids, and phenolic acids were up-regulated in the mutant. The transcriptome analysis showed the differential regulation of genes related to the gibberellin pathway, auxin transport, cell elongation, and cell wall modification. Based on the regulation of gibberellin and associated pathway-related genes, we discussed the involvement of gibberellins in pseudostem elongation in the mutant banana. Genes and metabolites associated with cell wall were explored and their involvement in cell extension is discussed.ConclusionsThe results suggest that gibberellins and associated pathways are possibly developing the observed semi-dwarf pseudostem phenotype together with cell elongation and cell wall modification. The findings increase the understanding of the mechanisms underlying banana stem height and provide new clues for further dissection of specific gene functions.


Sign in / Sign up

Export Citation Format

Share Document