scholarly journals Transcriptome Analysis of Pterygium and Pinguecula Reveals Evidence of Genomic Instability Associated with Chronic Inflammation

2021 ◽  
Vol 22 (21) ◽  
pp. 12090
Author(s):  
María Fernanda Suarez ◽  
José Echenique ◽  
Juan Manuel López ◽  
Esteban Medina ◽  
Mariano Irós ◽  
...  

Solar damage due to ultraviolet radiation (UVR) is implicated in the development of two proliferative lesions of the ocular surface: pterygium and pinguecula. Pterygium and pinguecula specimens were collected, along with adjacent healthy conjunctiva specimens. RNA was extracted and sequenced. Pairwise comparisons were made of differentially expressed genes (DEGs). Computational methods were used for analysis. Transcripts from 18,630 genes were identified. Comparison of two subgroups of pterygium specimens uncovered evidence of genomic instability associated with inflammation and the immune response; these changes were also observed in pinguecula, but to a lesser extent. Among the top DEGs were four genes encoding tumor suppressors that were downregulated in pterygium: C10orf90, RARRES1, DMBT1 and SCGB3A1; C10orf90 and RARRES1 were also downregulated in pinguecula. Ingenuity Pathway Analysis overwhelmingly linked DEGs to cancer for both lesions; however, both lesions are clearly still benign, as evidenced by the expression of other genes indicating their well-differentiated and non-invasive character. Pathways for epithelial cell proliferation were identified that distinguish the two lesions, as well as genes encoding specific pathway components. Upregulated DEGs common to both lesions, including KRT9 and TRPV3, provide a further insight into pathophysiology. Our findings suggest that pterygium and pinguecula, while benign lesions, are both on the pathological pathway towards neoplastic transformation.

2006 ◽  
Vol 80 (1) ◽  
pp. 25-31 ◽  
Author(s):  
C. Dalton ◽  
A.D. Goater ◽  
H.V. Smith

AbstractElectrorotation is a non-invasive technique that is capable of detecting changes in the morphology and physicochemical properties of microorganisms. The first detailed electrorotation study of the egg (ovum) of a parasitic nematode, namelyAscaris suumis described to show that electrorotation can rapidly differentiate between fertilized and non-fertilized eggs. Support for this conclusion is by optical microscopy of egg morphology, and also from modelling of the electrorotational response. Modelling was used to determine differences in the dielectric properties of the unfertilized and fertilized eggs, and also to investigate specific differences in the spectra of fertilized eggs only, potentially reflecting embryogenesis. The potential of electrorotation as an investigative tool is shown, as undamaged eggs can be subjected to further non-destructive and destructive techniques, which could provide further insight into parasite biology and epidemiology.


2019 ◽  
Author(s):  
Cassandra K. Hayne ◽  
Casey A. Schmidt ◽  
A. Gregory Matera ◽  
Robin E. Stanley

ABSTRACTThe splicing of tRNA introns is a critical step in pre-tRNA maturation. In archaea and eukaryotes, tRNA intron removal is catalyzed by the tRNA splicing endonuclease (TSEN) complex. Eukaryotic TSEN is comprised of four core subunits (TSEN54, TSEN2, TSEN34, and TSEN15). The human TSEN complex additionally co-purifies with the polynucleotide kinase CLP1; however, CLP1’s role in tRNA splicing remains unclear. Mutations in genes encoding all four TSEN subunits, as well as CLP1, are known to cause neurodegenerative disorders, yet the mechanisms underlying the pathogenesis of these disorders are unknown. Here, we developed a recombinant system that produces active TSEN complex. Co-expression of all four TSEN subunits is required for efficient formation and function of the complex. We show that human CLP1 associates with the active TSEN complex, but is not required for tRNA intron cleavage in vitro. Moreover, RNAi knockdown of the Drosophila CLP1 orthologue, cbc, promotes biogenesis of mature tRNAs and circularized tRNA introns (tricRNAs) in vivo. Collectively, these and other findings suggest that CLP1/cbc plays a regulatory role in tRNA splicing by serving as a negative modulator of the direct tRNA ligation pathway in animal cells.


Microbiology ◽  
2005 ◽  
Vol 151 (8) ◽  
pp. 2637-2646 ◽  
Author(s):  
Craig Baker-Austin ◽  
Mark Dopson ◽  
Margaret Wexler ◽  
R. Gary Sawers ◽  
Philip L. Bond

‘Ferroplasma acidarmanus’ strain Fer1 is an extremely acidophilic archaeon involved in the genesis of acid mine drainage, and was isolated from copper-contaminated mine solutions at Iron Mountain, CA, USA. Here, the initial proteomic and molecular investigation of Cu2+ resistance in this archaeon is presented. Analysis of Cu2+ toxicity via batch growth experiments and inhibition of oxygen uptake in the presence of ferrous iron demonstrated that Fer1 can grow and respire in the presence of 20 g Cu2+ l−1. The Fer1 copper resistance (cop) loci [originally detected by Ettema, T. J. G., Huynen, M. A., de Vos, W. M. & van der Oost, J. Trends Biochem Sci 28, 170–173 (2003)] include genes encoding a putative transcriptional regulator (copY), a putative metal-binding chaperone (copZ) and a putative copper-transporting P-type ATPase (copB). Transcription analyses demonstrated that copZ and copB are co-transcribed, and transcript levels were increased significantly in response to exposure to high levels of Cu2+, suggesting that the transport system is operating for copper efflux. Proteomic analysis of Fer1 cells exposed to Cu2+ revealed the induction of stress proteins associated with protein folding and DNA repair (including RadA, thermosome and DnaK homologues), suggesting that ‘Ferroplasma acidarmanus’ Fer1 uses multiple mechanisms for resistance to high levels of copper.


Author(s):  
H. G. Sandeep Patil ◽  
Ajit N. Babu ◽  
P. S. Ramkumar

Non-invasive medical measurements have expanded into several types of diagnostic and monitoring activities in health care delivery. They are being used in handling a number of non-infectious diseases such as diabetes, asthma, hypertension, congestive heart failure, cardiac arrhythmia, etc., as well as infectious diseases such as cholera, malaria, etc.. Non-Invasive Medical Devices (NIMDs) are naturally preferred over invasive methods considering patient convenience, reduced patient risk, increased speed, and operational simplicity. However non-invasive methods are often perceived to be less accurate than their invasive counterparts. Over the last decade, technological advances and mathematical techniques have improved significantly, challenging this perception across the board. The chapter will discuss this important transformation in health care diagnostics and monitoring. The chapter will also provide further insight into some of the currently available non-invasive measurement products and explore how futuristic techniques and technology trends which have great potential to transform healthcare into a significantly different paradigm than the one we experience today.


2018 ◽  
Vol 7 (3.14) ◽  
pp. 250 ◽  
Author(s):  
Siti Musliha Ajmal Mokhtar ◽  
Mastura Omar ◽  
Zahari Abu Bakar ◽  
Yusmeeraz Yusof ◽  
Zairi Ismael Rizman ◽  
...  

An overview of recent advancement in wearable glucose biosensor has been reviewed. The large sensing area, superior conductivity and high tensile strength has become key factors of graphene as material for flexible and wearable electronic device. This review discusses development and challenges based on graphene and its related materials of recent electrochemical glucose biosensor towards fast response, good selectivity, superb reproducibility and outstanding flexibility. A details comparison in terms of sensitivities, low detection limits and long-term stabilities are included. This review will also provide new insight into invasive and non-invasive methods as future prospect of wearable glucose biosensor.


2020 ◽  
Vol 9 (12) ◽  
pp. 4094
Author(s):  
Marjan Motiei ◽  
Katerina Vaculikova ◽  
Andrea Cela ◽  
Katerina Tvrdonova ◽  
Reza Khalili ◽  
...  

The selection of a highly-viable single embryo in assisted reproductive technology requires an acceptable predictive method in order to reduce the multiple pregnancy rate and increase the success rate. In this study, the metabolomic profiling of growing and impaired embryos was assessed on the fifth day of fertilization using capillary electrophoresis in order to find a relationship between the profiling and embryo development, and then to provide a mechanistic insight into the appearance/depletion of the metabolites. This unique qualitative technique exhibited the appearance of most non-essential amino acids and lactate, and depleting the serine, alanyl-glutamine and pyruvate in such a manner that the embryos impaired in their development secreted a considerably higher level of lactate and consumed a significantly higher amount of alanyl-glutamine. The different significant ratios of metabolomic depletion/appearance between the embryos confirm their potential for the improvement of the prospective selection of the developed single embryos, and also suggest the fact that pyruvate and alanyl-glutamine are the most critical ATP suppliers on the fifth day of blastocyst development.


2020 ◽  
Vol 117 (35) ◽  
pp. 21609-21617
Author(s):  
Zhenxing Liu ◽  
Christopher P. Selby ◽  
Yanyan Yang ◽  
Laura A. Lindsey-Boltz ◽  
Xuemei Cao ◽  
...  

The circadian clock is a global regulatory mechanism that controls the expression of 50 to 80% of transcripts in mammals. Some of the genes controlled by the circadian clock are oncogenes or tumor suppressors. Among theseMychas been the focus of several studies which have investigated the effect of clock genes and proteins onMyctranscription and MYC protein stability. Other studies have focused on effects ofMycmutation or overproduction on the circadian clock in comparison to their effects on cell cycle progression and tumorigenesis. Here we have used mice with mutations in the essential clock genesBmal1,Cry1,andCry2to gain further insight into the effect of the circadian clock on this important oncogene/oncoprotein and tumorigenesis. We find that mutation of bothCry1andCry2, which abolishes the negative arm of the clock transcription–translation feedback loop (TTFL), causes down-regulation of c-MYC, and mutation ofBmal1,which abolishes the positive arm of TTFL, causes up-regulation of the c-MYC protein level in mouse spleen. These findings must be taken into account in models of the clock disruption–cancer connection.


2020 ◽  
Vol 48 (14) ◽  
pp. 7609-7622 ◽  
Author(s):  
Cassandra K Hayne ◽  
Casey A Schmidt ◽  
Maira I Haque ◽  
A Gregory Matera ◽  
Robin E Stanley

Abstract The splicing of tRNA introns is a critical step in pre-tRNA maturation. In archaea and eukaryotes, tRNA intron removal is catalyzed by the tRNA splicing endonuclease (TSEN) complex. Eukaryotic TSEN is comprised of four core subunits (TSEN54, TSEN2, TSEN34 and TSEN15). The human TSEN complex additionally co-purifies with the polynucleotide kinase CLP1; however, CLP1’s role in tRNA splicing remains unclear. Mutations in genes encoding all four TSEN subunits, as well as CLP1, are known to cause neurodegenerative disorders, yet the mechanisms underlying the pathogenesis of these disorders are unknown. Here, we developed a recombinant system that produces active TSEN complex. Co-expression of all four TSEN subunits is required for efficient formation and function of the complex. We show that human CLP1 associates with the active TSEN complex, but is not required for tRNA intron cleavage in vitro. Moreover, RNAi knockdown of the Drosophila CLP1 orthologue, cbc, promotes biogenesis of mature tRNAs and circularized tRNA introns (tricRNAs) in vivo. Collectively, these and other findings suggest that CLP1/cbc plays a regulatory role in tRNA splicing by serving as a negative modulator of the direct tRNA ligation pathway in animal cells.


Sign in / Sign up

Export Citation Format

Share Document