scholarly journals Mechanisms and Regulation of Cellular Senescence

2021 ◽  
Vol 22 (23) ◽  
pp. 13173
Author(s):  
Lauréline Roger ◽  
Fanny Tomas ◽  
Véronique Gire

Cellular senescence entails a state of an essentially irreversible proliferative arrest in which cells remain metabolically active and secrete a range of pro-inflammatory and proteolytic factors as part of the senescence-associated secretory phenotype. There are different types of senescent cells, and senescence can be induced in response to many DNA damage signals. Senescent cells accumulate in different tissues and organs where they have distinct physiological and pathological functions. Despite this diversity, all senescent cells must be able to survive in a nondividing state while protecting themselves from positive feedback loops linked to the constant activation of the DNA damage response. This capacity requires changes in core cellular programs. Understanding how different cell types can undergo extensive changes in their transcriptional programs, metabolism, heterochromatin patterns, and cellular structures to induce a common cellular state is crucial to preventing cancer development/progression and to improving health during aging. In this review, we discuss how senescent cells continuously evolve after their initial proliferative arrest and highlight the unifying features that define the senescent state.

2013 ◽  
Vol 228 (12) ◽  
pp. 2365-2376 ◽  
Author(s):  
Audrey Sermeus ◽  
Magali Rebucci ◽  
Maude Fransolet ◽  
Lionel Flamant ◽  
Déborah Desmet ◽  
...  

2017 ◽  
Vol 114 (23) ◽  
pp. E4612-E4620 ◽  
Author(s):  
Hui Yang ◽  
Hanze Wang ◽  
Junyao Ren ◽  
Qi Chen ◽  
Zhijian J. Chen

Cellular senescence is a natural barrier to tumorigenesis and it contributes to the antitumor effects of several therapies, including radiation and chemotherapeutic drugs. Senescence also plays an important role in aging, fibrosis, and tissue repair. The DNA damage response is a key event leading to senescence, which is characterized by the senescence-associated secretory phenotype (SASP) that includes expression of inflammatory cytokines. Here we show that cGMP-AMP (cGAMP) synthase (cGAS), a cytosolic DNA sensor that activates innate immunity, is essential for senescence. Deletion of cGAS accelerated the spontaneous immortalization of mouse embryonic fibroblasts. cGAS deletion also abrogated SASP induced by spontaneous immortalization or DNA damaging agents, including radiation and etoposide. cGAS is localized in the cytoplasm of nondividing cells but enters the nucleus and associates with chromatin DNA during mitosis in proliferating cells. DNA damage leads to accumulation of damaged DNA in cytoplasmic foci that contain cGAS. In human lung adenocarcinoma patients, low expression of cGAS is correlated with poor survival. These results indicate that cGAS mediates cellular senescence and retards immortalization. This is distinct from, and complementary to, the role of cGAS in activating antitumor immunity.


Author(s):  
U. Aebi ◽  
P. Rew ◽  
T.-T. Sun

Various types of intermediate-sized (10-nm) filaments have been found and described in many different cell types during the past few years. Despite the differences in the chemical composition among the different types of filaments, they all yield common structural features: they are usually up to several microns long and have a diameter of 7 to 10 nm; there is evidence that they are made of several 2 to 3.5 nm wide protofilaments which are helically wound around each other; the secondary structure of the polypeptides constituting the filaments is rich in ∞-helix. However a detailed description of their structural organization is lacking to date.


Cancer Cell ◽  
2009 ◽  
Vol 15 (4) ◽  
pp. 255-269 ◽  
Author(s):  
Awad Shamma ◽  
Yujiro Takegami ◽  
Takao Miki ◽  
Shunsuke Kitajima ◽  
Makoto Noda ◽  
...  

Author(s):  
Yu Yamamoto ◽  
Manabu Minami ◽  
Kazumichi Yoshida ◽  
Manabu Nagata ◽  
Takeshi Miyata ◽  
...  

Background Chronic inflammation through cellular senescence, known as the senescence‐associated secretory phenotype, is a mechanism of various organ diseases, including atherosclerosis. Particularly, ionizing radiation (IR) contributes to cellular senescence by causing DNA damage. Although previous clinical studies have demonstrated that radiotherapy causes atherosclerosis as a long‐term side effect, the detailed mechanism is unclear. This study was conducted to investigate the relationship between radiation‐induced atherosclerosis and senescence‐associated secretory phenotype in murine carotid arteries. Methods and Results Partial ligation of the left carotid artery branches in 9‐week‐old male apolipoprotein E‐deficient mice was performed to induce atherosclerosis. The mice received total body irradiation at a dose of 6 Gy using gamma rays at 2 weeks post operation. We compared the samples collected 4 weeks after IR with unirradiated control samples. The IR and control groups presented pathologically progressive lesions in 90.9% and 72.3% of mice, respectively. Plaque volume, macrophage accumulation, and phenotype switching of vascular smooth muscle cells were advanced in the IR group. Irradiated samples showed increased persistent DNA damage response (53BP1 [p53 binding protein 1]), upregulated cyclin‐dependent kinase inhibitors (p16INK4a and p21), and elevated inflammatory chemokines expression (monocyte chemotactic protein‐1, keratinocyte‐derived chemokine, and macrophage inflammatory protein 2). Conclusions IR promoted plaque growth in murine carotid arteries. Our findings support the possibility that senescence‐associated secretory phenotype aggravates atherogenesis in irradiated artery. This mice model might contribute to mechanism elucidation of radiation‐induced atherosclerosis.


2020 ◽  
Author(s):  
Huixia Ren ◽  
Yanjun Li ◽  
Chengsheng Han ◽  
Yi Yu ◽  
Bowen Shi ◽  
...  

ABSTRACTThe Ca2+ modulated pulsatile secretions of glucagon and insulin by pancreatic α and β cells play a key role in glucose metabolism and homeostasis. However, how different types of islet cells couple and coordinate via paracrine interactions to produce various Ca2+ oscillation patterns are still elusive. By designing a microfluidic device to facilitate long-term recording of islet Ca2+ activity at single cell level and simultaneously identifying different cell types in live islet imaging, we show heterogeneous but intrinsic Ca2+ oscillation patterns of islets upon glucose stimulation. The α and β cells oscillate in antiphase and are globally phase locked to various phase delays, causing fast, slow or mixed oscillations. A mathematical model of coupled phase oscillators quantitatively agrees with experiments and reveals the essential role of paracrine regulations in tuning the oscillation modes. Our study highlights the importance of cell-cell interactions to generate stable but tunable islet oscillation patterns.


2012 ◽  
Vol 303 (7) ◽  
pp. L557-L566 ◽  
Author(s):  
Hongwei Yao ◽  
Irfan Rahman

Histone deacetylase 2 (HDAC2) is a class I histone deacetylase that regulates various cellular processes, such as cell cycle, senescence, proliferation, differentiation, development, apoptosis, and glucocorticoid function in inhibiting inflammatory response. HDAC2 has been shown to protect against DNA damage response and cellular senescence/premature aging via an epigenetic mechanism in response to oxidative stress. These phenomena are observed in patients with chronic obstructive pulmonary disease (COPD). HDAC2 is posttranslationally modified by oxidative/carbonyl stress imposed by cigarette smoke and oxidants, leading to its reduction via an ubiquitination-proteasome dependent degradation in lungs of patients with COPD. In this perspective, we have discussed the role of HDAC2 posttranslational modifications and its role in regulation of inflammation, histone/DNA epigenetic modifications, DNA damage response, and cellular senescence, particularly in inflammaging, and during the development of COPD. We have also discussed the potential directions for future translational research avenues in modulating lung inflammaging and cellular senescence based on epigenetic chromatin modifications in diseases associated with increased oxidative stress.


Author(s):  
Christian J. Hendriksz ◽  
Francois Karstens

There are 8 different types of diseases of the mucopolysaccharides, each caused by a deficiency in one of 10 different enzymes involved in the degradation of glycosaminoglycans (GAGs). Partially degraded GAGs accumulate within the lysosomes of many different cell types and lead to clinical symptoms and excretion of large amounts of GAGs in the urine. Heritability is autosomal recessive except for MPS type II, which is X-linked. The disorders are chronic and progressive and, although the specific types all have their individual features, they share an abundance of clinical similarities. All involve the musculoskeletal, the cardiovascular, the pulmonary and the central nervous system.


Sign in / Sign up

Export Citation Format

Share Document