scholarly journals A Meta-Analysis of Human Transcriptomics Data in the Context of Peritoneal Dialysis Identifies Novel Receptor-Ligand Interactions as Potential Therapeutic Targets

2021 ◽  
Vol 22 (24) ◽  
pp. 13277
Author(s):  
Michail Evgeniou ◽  
Juan Manuel Sacnun ◽  
Klaus Kratochwill ◽  
Paul Perco

Peritoneal dialysis (PD) is one therapeutic option for patients with end-stage kidney disease (ESKD). Molecular profiling of samples from PD patients using different Omics technologies has led to the discovery of dysregulated molecular processes due to PD treatment in recent years. In particular, a number of transcriptomics (TX) datasets are currently available in the public domain in the context of PD. We set out to perform a meta-analysis of TX datasets to identify dysregulated receptor-ligand interactions in the context of PD-associated complications. We consolidated transcriptomics profiles from twelve untargeted genome-wide gene expression studies focusing on human cell cultures or samples from human PD patients. Gene set enrichment analysis was used to identify enriched biological processes. Receptor-ligand interactions were identified using data from CellPhoneDB. We identified 2591 unique differentially expressed genes in the twelve PD studies. Key enriched biological processes included angiogenesis, cell adhesion, extracellular matrix organization, and inflammatory response. We identified 70 receptor-ligand interaction pairs, with both interaction partners being dysregulated on the transcriptional level in one of the investigated tissues in the context of PD. Novel receptor-ligand interactions without prior annotation in the context of PD included BMPR2-GDF6, FZD4-WNT7B, ACKR2-CCL2, or the binding of EPGN and EREG to the EGFR, as well as the binding of SEMA6D to the receptors KDR and TYROBP. In summary, we have consolidated human transcriptomics datasets from twelve studies in the context of PD and identified sets of novel receptor-ligand pairs being dysregulated in the context of PD that warrant investigation in future functional studies.

2021 ◽  
Vol 12 (1) ◽  
pp. 009-019
Author(s):  
Ying Yang ◽  
Jin Wang ◽  
Shihai Xu ◽  
Wen Lv ◽  
Fei Shi ◽  
...  

Abstract Background In cancer, kappa B-interacting protein (IKBIP) has rarely been reported. This study aimed at investigating its expression pattern and biological function in brain glioma at the transcriptional level. Methods We selected 301 glioma patients with microarray data from CGGA database and 697 glioma patients with RNAseq data from TCGA database. Transcriptional data and clinical data of 998 samples were analyzed. Statistical analysis and figure generating were performed with R language. Results We found that IKBIP expression showed positive correlation with WHO grade of glioma. IKBIP was increased in isocitrate dehydrogenase (IDH) wild type and mesenchymal molecular subtype of glioma. Gene ontology analysis demonstrated that IKBIP was profoundly associated with extracellular matrix organization, cell–substrate adhesion and response to wounding in both pan-glioma and glioblastoma. Subsequent gene set enrichment analysis revealed that IKBIP was particularly correlated with epithelial-to-mesenchymal transition (EMT). To further elucidate the relationship between IKBIP and EMT, we performed gene set variation analysis to screen the EMT-related signaling pathways and found that IKBIP expression was significantly associated with PI3K/AKT, hypoxia and TGF-β pathway. Moreover, IKBIP expression was found to be synergistic with key biomarkers of EMT, especially with N-cadherin, vimentin, snail, slug and TWIST1. Finally, higher IKBIP indicated significantly shorter survival for glioma patients. Conclusions IKBIP was associated with more aggressive phenotypes of gliomas. Furthermore, IKBIP was significantly involved in EMT and could serve as an independent prognosticator in glioma.


2011 ◽  
Vol 10 (4) ◽  
pp. 3856-3887 ◽  
Author(s):  
Q.Y. Ning ◽  
J.Z. Wu ◽  
N. Zang ◽  
J. Liang ◽  
Y.L. Hu ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Yani Dong ◽  
Likang Lyu ◽  
Daiqiang Zhang ◽  
Jing Li ◽  
Haishen Wen ◽  
...  

Long non-coding RNAs (lncRNAs) have been reported to be involved in multiple biological processes. However, the roles of lncRNAs in the reproduction of half-smooth tongue sole (Cynoglossus semilaevis) are unclear, especially in the molecular regulatory mechanism driving ovarian development and ovulation. Thus, to explore the mRNA and lncRNA mechanisms regulating reproduction, we collected tongue sole ovaries in three stages for RNA sequencing. In stage IV vs. V, we identified 312 differentially expressed (DE) mRNAs and 58 DE lncRNAs. In stage V vs. VI, we identified 1,059 DE mRNAs and 187 DE lncRNAs. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses showed that DE mRNAs were enriched in ECM-receptor interaction, oocyte meiosis and steroid hormone biosynthesis pathways. Furthermore, we carried out gene set enrichment analysis (GSEA) to identify potential reproduction related-pathways additionally, such as fatty metabolism and retinol metabolism. Based on enrichment analysis, DE mRNAs with a potential role in reproduction were selected and classified into six categories, including signal transduction, cell growth and death, immune response, metabolism, transport and catabolism, and cell junction. The interactions of DE lncRNAs and mRNAs were predicted according to antisense, cis-, and trans-regulatory mechanisms. We constructed a competing endogenous RNA (ceRNA) network. Several lncRNAs were predicted to regulate genes related to reproduction including cyp17a1, cyp19a1, mmp14, pgr, and hsd17b1. The functional enrichment analysis of these target genes of lncRNAs revealed that they were involved in several signaling pathways, such as the TGF-beta, Wnt signaling, and MAPK signaling pathways and reproduction related-pathways such as the progesterone-mediated oocyte maturation, oocyte meiosis, and GnRH signaling pathway. RT-qPCR analysis showed that two lncRNAs (XR_522278.2 and XR_522171.2) were mainly expressed in the ovary. Dual-fluorescence in situ hybridization experiments showed that both XR_522278.2 and XR_522171.2 colocalized with their target genes cyp17a1 and cyp19a1, respectively, in the follicular cell layer. The results further demonstrated that lncRNAs might be involved in the biological processes by modulating gene expression. Taken together, this study provides lncRNA profiles in the ovary of tongue sole and further insight into the role of lncRNA involvement in regulating reproduction in tongue sole.


2021 ◽  
Vol 12 ◽  
Author(s):  
Mi Rong Lee ◽  
Jong Cheol Kim ◽  
So Eun Park ◽  
Se Jin Lee ◽  
Woo Jin Kim ◽  
...  

The longhorned tick, Haemaphysalis longicornis (Acari: Ixodidae), is a hard tick and a vector for severe fever with thrombocytopenia syndrome (SFTS) virus. The number of patients infected with SFTS is rapidly increasing. Recently, the invertebrate pathogen Metarhizium anisopliae JEF-290 was reported to be useful to control the tick as an alternative to chemical acaricides, which are not easily applicable in human living areas where the tick is widely spread. In this study, we analyzed how the tick and the fungal pathogen interact at the transcriptional level. Field-collected tick nymphs were treated with JEF-290 conidia at 1 × 108 conidia/ml. In the early stage of infection with 2.5% mortality, the infected ticks were subjected to RNA sequencing, and non-infected ticks and fungal masses served as controls. Fungus and tick genes were mostly up-regulated at the early stage of infection. In the gene set enrichment analysis of the infecting fungus, catabolic processes that included lipids, phospholipids, and detoxification processes, the response to oxidative stress, and toxic substances were significantly up-regulated. In this fungal up-regulation, various lipase, antioxidant enzyme, and hydrolase genes were highly transcribed. The gene set enrichment analysis of the infected tick showed that many peptide synthesis processes including translation, peptide metabolism, ribonucleotide metabolism, and energy production processes that included ATP generation and ADP metabolism were significantly up-regulated. Structurally, mitochondria and ribosome subunit genes in ticks were highly transcribed to upregulate these processes. Together these results indicate that JEF-290 initiates process that infects the tick while the tick actively defends against the fungal attack. This work provides background to improve our understanding of the early stage of fungal infection in longhorned tick.


2021 ◽  
Vol 11 ◽  
Author(s):  
Dengliang Lei ◽  
Yue Chen ◽  
Yang Zhou ◽  
Gangli Hu ◽  
Fang Luo

BackgroundHepatocellular carcinoma (HCC) is one of the world’s most prevalent and lethal cancers. Notably, the microenvironment of tumor starvation is closely related to cancer malignancy. Our study constructed a signature of starvation-related genes to predict the prognosis of liver cancer patients.MethodsThe mRNA expression matrix and corresponding clinical information of HCC patients were obtained from the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). Gene set enrichment analysis (GSEA) was used to distinguish different genes in the hunger metabolism gene in liver cancer and adjacent tissues. Gene Set Enrichment Analysis (GSEA) was used to identify biological differences between high- and low-risk samples. Univariate and multivariate analyses were used to construct prognostic models for hunger-related genes. Kaplan-Meier (KM) and receiver-operating characteristic (ROC) were used to assess the model accuracy. The model and relevant clinical information were used to construct a nomogram, protein expression was detected by western blot (WB), and transwell assay was used to evaluate the invasive and metastatic ability of cells.ResultsFirst, we used univariate analysis to identify 35 prognostic genes, which were further demonstrated to be associated with starvation metabolism through Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO). We then used multivariate analysis to build a model with nine genes. Finally, we divided the sample into low- and high-risk groups according to the median of the risk score. KM can be used to conclude that the prognosis of high- and low-risk samples is significantly different, and the prognosis of high-risk samples is worse. The prognostic accuracy of the 9-mRNA signature was also tested in the validation data set. GSEA was used to identify typical pathways and biological processes related to 9-mRNA, cell cycle, hypoxia, p53 pathway, and PI3K/AKT/mTOR pathway, as well as biological processes related to the model. As evidenced by WB, EIF2S1 expression was increased after starvation. Overall, EIF2S1 plays an important role in the invasion and metastasis of liver cancer.ConclusionsThe 9-mRNA model can serve as an accurate signature to predict the prognosis of liver cancer patients. However, its mechanism of action warrants further investigation.


2019 ◽  
Vol 10 (11) ◽  
Author(s):  
Tae-Jun Park ◽  
Jei Hyoung Park ◽  
Ga Seul Lee ◽  
Ji-Yoon Lee ◽  
Ji Hye Shin ◽  
...  

Abstract Ischaemic heart disease (IHD) is the leading cause of death worldwide. Although myocardial cell death plays a significant role in myocardial infarction (MI), its underlying mechanism remains to be elucidated. To understand the progression of MI and identify potential therapeutic targets, we performed tandem mass tag (TMT)-based quantitative proteomic analysis using an MI mouse model. Gene ontology (GO) analysis and gene set enrichment analysis (GSEA) revealed that the glutathione metabolic pathway and reactive oxygen species (ROS) pathway were significantly downregulated during MI. In particular, glutathione peroxidase 4 (GPX4), which protects cells from ferroptosis (an iron-dependent programme of regulated necrosis), was downregulated in the early and middle stages of MI. RNA-seq and qRT-PCR analyses suggested that GPX4 downregulation occurred at the transcriptional level. Depletion or inhibition of GPX4 using specific siRNA or the chemical inhibitor RSL3, respectively, resulted in the accumulation of lipid peroxide, leading to cell death by ferroptosis in H9c2 cardiomyoblasts. Although neonatal rat ventricular myocytes (NRVMs) were less sensitive to GPX4 inhibition than H9c2 cells, NRVMs rapidly underwent ferroptosis in response to GPX4 inhibition under cysteine deprivation. Our study suggests that downregulation of GPX4 during MI contributes to ferroptotic cell death in cardiomyocytes upon metabolic stress such as cysteine deprivation.


2020 ◽  
Author(s):  
Qiaoyun Zhao ◽  
Rulin Zhao ◽  
Conghua Song ◽  
Huan Wang ◽  
Jianfang Rong ◽  
...  

Abstract Background Insulin-like growth factor binding protein-7 (IGFBP7) contributes to multiple biological processes in various tumors. However, the role of IGFBP7 in gastric cancer (GC) is still undetermined. The study aims to explore the role of IGFBP7 in GC via an integrated bioinformatics analysis.Methods IGFBP7 expression levels in GC and its normal gastric tissues were analyzed using multiple databases, including the Tumor Immune Estimation Resource (TIMER), Oncomine, The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. The methylation analysis was conducted with MEXPRESS, UALCAN and Xena online tools. The survival analysis was conducted using the Kaplan-Meier Plotter and Gene Expression Profiling Interactive Analysis (GEPIA) databases. Coexpressed genes of IGFBP7 were selected with the cBioPortal tool and enrichment analysis was conducted with the clusterProfiler package in R software. Gene set enrichment analysis (GSEA) was performed to explore the IGFBP7-related biological processes involved in GC. Correlations between IGFBP7 and immune cell infiltrates were analyzed using the TIMER database.Results IGFBP7 expression was significantly upregulated in GC and correlated with stage, grade, tumor status and Helicobacter pylori infection. High IGFBP7 expression and low IGFBP7 methylation levels were significantly associated with short survival of patients with GC. Univariate and multivariate analyses revealed that IGFBP7 was an independent risk factor for GC. The coexpressed genes LHFPL6, SEPTIN4, HSPB2, LAYN and GGT5 predicted unfavorable outcomes of GC. Enrichment analysis showed that the coexpressed genes were involved in extracellular matrix (ECM)-related processes. GSEA indicated that IGFBP7 was positively related to ECM and inflammation-related pathways. TIMER analysis indicated that the IGFBP7 expression level was strongly correlated with genes related to various infiltrating immune cells in GC, especially with gene markers of tumor associated macrophages (TAMs).Conclusions We demonstrate that increased IGFBP7 expression correlates with poor prognosis and immune cell infiltration in GC. IGFBP7 might be a potential biomarker for the diagnosis and targeted therapy for GC.


BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Venkata S. K. Manem

Abstract Background Radiation therapy is among the most effective and commonly used therapeutic modalities of cancer treatments in current clinical practice. The fundamental paradigm that has guided radiotherapeutic regimens are ‘one-size-fits-all’, which are not in line with the dogma of precision medicine. While there were efforts to build radioresponse signatures using OMICS data, their ability to accurately predict in patients is still limited. Methods We proposed to integrate two large-scale radiogenomics datasets consisting of 511 with 23 tissues and 60 cancer cell lines with 9 tissues to build and validate radiation response biomarkers. We used intrinsic radiation sensitivity, i.e., surviving fraction of cells (SF2) as the radiation response indicator. Gene set enrichment analysis was used to examine the biological determinants driving SF2. Using SF2 as a continuous variable, we used five different approaches, univariate, rank gene ensemble, rank gene multivariate, mRMR and elasticNet to build genomic predictors of radiation response through a cross-validation framework. Results Through the pathway analysis, we found 159 pathways to be statistically significant, out of which 54 and 105 were positively and negatively enriched with SF2. More importantly, we found cell cycle and repair pathways to be enriched with SF2, which are inline with the fundamental aspects of radiation biology. With regards to the radiation response gene signature, we found that all multivariate models outperformed the univariate model with a ranking based approach performing well compared to other models, indicating complex biological processes underpinning radiation response. Conclusion To summarize, we found biological processes underpinning SF2 and systematically compared different machine learning approaches to develop and validate predictors of radiation response. With more patient data available in the future, the clinical value of these biomarkers can be assessed that would allow for personalization of radiotherapy.


PLoS ONE ◽  
2021 ◽  
Vol 16 (10) ◽  
pp. e0258554
Author(s):  
Marty O. Visscher ◽  
Ping Hu ◽  
Andrew N. Carr ◽  
Charles C. Bascom ◽  
Robert J. Isfort ◽  
...  

At birth, human infants are poised to survive in harsh, hostile conditions. An understanding of the state of newborn skin development and maturation is key to the maintenance of health, optimum response to injury, healing and disease. The observational study collected full-thickness newborn skin samples from 27 infants at surgery and compared them to skin samples from 43 adult sites protected from ultraviolet radiation exposure, as the standard for stable, mature skin. Transcriptomics profiling and gene set enrichment analysis were performed. Statistical analysis established over 25,000 differentially regulated probe sets, representing 10,647 distinct genes, in infant skin compared to adult skin. Gene set enrichment analysis showed a significant increase in 143 biological processes (adjusted p < 0.01) in infant skin, versus adult skin samples, including extracellular matrix (ECM) organization, cell adhesion, collagen fibril organization and fatty acid metabolic process. ECM organization and ECM structure organization were the biological processes in infant skin with the lowest adjusted P-value. Genes involving epidermal development, immune function, cell differentiation, and hair cycle were overexpressed in adults, representing 101 significantly enriched biological processes (adjusted p < 0.01). The processes with the highest significant difference were skin and epidermal development, e.g., keratinocyte differentiation, keratinization and cornification intermediate filament cytoskeleton organization and hair cycle. Enriched Gene Ontology (GO) biological processes also involved immune function, including antigen processing and presentation. When compared to ultraviolet radiation-protected adult skin, our results provide essential insight into infant skin and its ability to support the newborn’s preparedness to survive and flourish, despite the infant’s new environment laden with microbes, high oxygen tension and potential irritants. This fundamental knowledge is expected to guide strategies to protect and preserve the features of unperturbed, young skin.


2013 ◽  
pp. 570-585
Author(s):  
Jian Yu ◽  
Jun Wu ◽  
Miaoxin Li ◽  
Yajun Yi ◽  
Yu Shyr ◽  
...  

Integrative analysis of microarray data has been proven as a more reliable approach to deciphering molecular mechanisms underlying biological studies. Traditional integration such as meta-analysis is usually gene-centered. Recently, gene set enrichment analysis (GSEA) has been widely applied to bring gene-level interpretation to pathway-level. GSEA is an algorithm focusing on whether an a priori defined set of genes shows statistically significant differences between two biological states. However, GSEA does not support integrating multiple microarray datasets generated from different studies. To overcome this, the improved version of GSEA, ASSESS, is more applicable, after necessary modifications. By making proper combined use of meta-analysis, GSEA, and modified ASSESS, this chapter reports two workflow pipelines to extract consistent expression pattern change at pathway-level, from multiple microarray datasets generated by the same or different microarray production platforms, respectively. Such strategies amplify the advantage and overcome the disadvantage than if using each method individually, and may achieve a more comprehensive interpretation towards a biological theme based on an increased sample size. With further network analysis, it may also allow an overview of cross-talking pathways based on statistical integration of multiple gene expression studies. A web server where one of the pipelines is implemented is available at: http://lifecenter.sgst.cn/mgsea//home.htm.


Sign in / Sign up

Export Citation Format

Share Document