scholarly journals The Progress of Intestinal Epithelial Models from Cell Lines to Gut-On-Chip

2021 ◽  
Vol 22 (24) ◽  
pp. 13472
Author(s):  
Shafaque Rahman ◽  
Mohammed Ghiboub ◽  
Joanne M. Donkers ◽  
Evita van de Steeg ◽  
Eric A. F. van Tol ◽  
...  

Over the past years, several preclinical in vitro and ex vivo models have been developed that helped to understand some of the critical aspects of intestinal functions in health and disease such as inflammatory bowel disease (IBD). However, the translation to the human in vivo situation remains problematic. The main reason for this is that these approaches fail to fully reflect the multifactorial and complex in vivo environment (e.g., including microbiota, nutrition, and immune response) in the gut system. Although conventional models such as cell lines, Ussing chamber, and the everted sac are still used, increasingly more sophisticated intestinal models have been developed over the past years including organoids, InTESTine™ and microfluidic gut-on-chip. In this review, we gathered the most recent insights on the setup, advantages, limitations, and future perspectives of most frequently used in vitro and ex vivo models to study intestinal physiology and functions in health and disease.

Author(s):  
Beate Gündel ◽  
Xinyuan Liu ◽  
Matthias Löhr ◽  
Rainer Heuchel

Pancreatic ductal adenocarcinoma (PDAC) is one of the most overlooked cancers despite its dismal median survival time of 6 months. The biggest challenges in improving patient survival are late diagnosis due to lack of diagnostic markers, and limited treatment options due to almost complete therapy resistance. The past decades of research identified the dense stroma and the complex interplay/crosstalk between the cancer- and the different stromal cells as the main culprits for the slow progress in improving patient outcome. For better ex vivo simulation of this complex tumor microenvironment the models used in PDAC research likewise need to become more diverse. Depending on the focus of the investigation, several in vitro and in vivo models for PDAC have been established in the past years. Particularly, 3D cell culture such as spheroids and organoids have become more frequently used. This review aims to examine current PDAC in vitro models, their inherent limitations, and their successful implementations in research.


2020 ◽  
Vol 26 (3) ◽  
pp. 179-192 ◽  
Author(s):  
Swati Sharma ◽  
Bastien Venzac ◽  
Thomas Burgers ◽  
Séverine Le Gac ◽  
Stefan Schlatt

Abstract The significant rise in male infertility disorders over the years has led to extensive research efforts to recapitulate the process of male gametogenesis in vitro and to identify essential mechanisms involved in spermatogenesis, notably for clinical applications. A promising technology to bridge this research gap is organ-on-chip (OoC) technology, which has gradually transformed the research landscape in ART and offers new opportunities to develop advanced in vitro culture systems. With exquisite control on a cell or tissue microenvironment, customized organ-specific structures can be fabricated in in vitro OoC platforms, which can also simulate the effect of in vivo vascularization. Dynamic cultures using microfluidic devices enable us to create stimulatory effect and non-stimulatory culture conditions. Noteworthy is that recent studies demonstrated the potential of continuous perfusion in OoC systems using ex vivo mouse testis tissues. Here we review the existing literature and potential applications of such OoC systems for male reproduction in combination with novel bio-engineering and analytical tools. We first introduce OoC technology and highlight the opportunities offered in reproductive biology in general. In the subsequent section, we discuss the complex structural and functional organization of the testis and the role of the vasculature-associated testicular niche and fluid dynamics in modulating testis function. Next, we review significant technological breakthroughs in achieving in vitro spermatogenesis in various species and discuss the evidence from microfluidics-based testes culture studies in mouse. Lastly, we discuss a roadmap for the potential applications of the proposed testis-on-chip culture system in the field of primate male infertility, ART and reproductive toxicology.


2017 ◽  
Vol 14 (127) ◽  
pp. 20160992 ◽  
Author(s):  
B. Zeller-Plumhoff ◽  
T. Roose ◽  
G. F. Clough ◽  
P. Schneider

The supply of oxygen in sufficient quantity is vital for the correct functioning of all organs in the human body, in particular for skeletal muscle during exercise. Disease is often associated with both an inhibition of the microvascular supply capability and is thought to relate to changes in the structure of blood vessel networks. Different methods exist to investigate the influence of the microvascular structure on tissue oxygenation, varying over a range of application areas, i.e. biological in vivo and in vitro experiments, imaging and mathematical modelling. Ideally, all of these methods should be combined within the same framework in order to fully understand the processes involved. This review discusses the mathematical models of skeletal muscle oxygenation currently available that are based upon images taken of the muscle microvasculature in vivo and ex vivo . Imaging systems suitable for capturing the blood vessel networks are discussed and respective contrasting methods presented. The review further informs the association between anatomical characteristics in health and disease. With this review we give the reader a tool to understand and establish the workflow of developing an image-based model of skeletal muscle oxygenation. Finally, we give an outlook for improvements needed for measurements and imaging techniques to adequately investigate the microvascular capability for oxygen exchange.


2016 ◽  
Vol 09 (05) ◽  
pp. 1650046 ◽  
Author(s):  
Xiangqian Hong ◽  
Vivek K. Nagarajan ◽  
Dale H. Mugler ◽  
Bing Yu

High resolution optical endoscopes are increasingly used in diagnosis of various medical conditions of internal organs, such as the cervix and gastrointestinal (GI) tracts, but they are too expensive for use in resource-poor settings. On the other hand, smartphones with high resolution cameras and Internet access have become more affordable, enabling them to diffuse into most rural areas and developing countries in the past decade. In this paper, we describe a smartphone microendoscope that can take fluorescence images with a spatial resolution of 3.1 [Formula: see text]m. Images collected from ex vivo, in vitro and in vivo samples using the device are also presented. The compact and cost-effective smartphone microendoscope may be envisaged as a powerful tool for detecting pre-cancerous lesions of internal organs in low and middle-income countries (LMICs).


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 3773-3773
Author(s):  
Nina Mohell ◽  
Charlotta Liljebris ◽  
Jessica Alfredsson ◽  
Ylva Lindman ◽  
Maria Uustalu ◽  
...  

Abstract Abstract 3773 Poster Board III-709 Introduction The tumor suppressor protein p53 induces cell cycle arrest and/or apoptosis in response to various forms of cellular stress, through transcriptional regulation of a large number of down stream target genes. p53 is frequently mutated in cancer, and cancer cells carrying defects in the p53 protein are often more resistant to conventional chemotherapy. Thus, restoration of the wild type function to mutant p53 appears to be a new attractive strategy for cancer therapy. APR-246 is a novel small molecule quinuclidinone compound that has been shown to reactivate non-functional p53 and induce apoptosis. Although the exact molecular mechanism remains to be determined, recent results suggest that an active metabolite of APR-246 alkylates thiol groups in the core domain of p53, which promotes correct folding of p53 and induces apoptosis (Lambert et al., Cancer Cell 15, 2009). Currently, APR-246 is in Phase I/IIa clinical trials for hematological malignancies and prostate cancer. In the present abstract results from in vitro, ex vivo and in vivo preclinical studies with APR-246 are presented. Results The lead compound of APR-246, PRIMA-1 (p53 reactivation and induction of massive apoptosis), was originally identified by a cellular screening of the NCI library for low molecular weight compounds (Bykov et al., Nat. Med., 8, 2002). Further development and optimization of PRIMA-1 led to the discovery of the structural analog APR-246 (PRIMA-1MET), with improved drug like and preclinical characteristics. In in vitro experiments APR-246 reduced cell viability (WST-1 assay) in a large number of human cancer cell lines with various p53 status, including several leukemia (CCRF-CEM, CEM/VM-1, KBM3), lymphoma (U-937 GTP, U-937-vcr), and myeloma (RPMI 8226/S, 8226/dox40, 8226/LR5) cell lines, as well as many solid cancer cell lines, including osteosarcoma (SaOS-2, SaOS-2-His273,U-2OS), prostate (PC3, PC3-His175, 22Rv1), breast (BT474, MCF-7, MDA-MB-231), lung (H1299, H1299-His175) and colon cancer (HT-29). In human osteosarcoma cell lines APR-246 reduced cell viability and induced apoptosis (FLICA caspase assay) in a concentration dependent manner being more potent in the p53 mutant (SaOS-2-His273) than in the parental p53 null (SaOS-2) cells. The IC50 values (WST-1 assay) were 14 ± 3 and 27 ± 5 μM, respectively (n=35). In in vivo subcutaneous xenograft studies in SCID (severe combined immunodeficiency) mice APR-246 reduced growth of p53 mutant SaOS-2-His273 cells in a dose-dependent manner, when injected i.v. twice daily with 20 -100 mg/kg (64 – 76% inhibition). An in vivo anticancer effect of APR-246 was also observed in hollow-fiber test with NMRI mice using the acute myeloid leukemia (AML) cell line MV-4-11. An ex vivo cytotoxic effect of APR-246 and/or its lead compound PRIMA-1 has also been shown in primary cells from AML and CLL (chronic lymphocytic leukemia) patients, harbouring both hemizygously deleted p53 as well as normal karyotype (Nahi et al., Br. J. Haematol., 127, 2004; Nahi et al., Br. J. Haematol., 132, 2005; Jonsson-Videsater et al., abstract at this meeting). APR-246 was also tested in a FMCA (fluorometric microculture assay) test using normal healthy lymphocytes (PBMC) and cancer lymphocytes (CLL). It was 4-8 fold more potent in killing cancer cells than normal cells, indicating a favorable therapeutic index. This is in contrast to conventional cytostatics that often show negative ratio in this test. Furthermore, when tested in a well-defined panel of 10 human cancer cell lines consisting of both hematological and solid cancer cell lines, the cytotoxicity profile/activity pattern of APR-246 differed from common chemotherapeutic drugs (correlation coefficient less than 0.4), suggesting a different mechanism of action. Conclusion In relevant in vitro, in vivo and ex vivo cancer models, APR-246 showed unique pharmacological properties in comparison with conventional cytostatics, by being effective also in cancer cells with p53 mutations and by demonstrating tumor specificity. Moreover, in experimental safety/toxicology models required to start clinical trials, APR-246 was non toxic at the predicted therapeutic plasma concentrations. Thus, APR-246 appears to be a promising novel anticancer compound that may specifically target cancer cells in patients with genetic abnormality associated with poor prognosis. Disclosures: Mohell: Aprea AB: Employment. Liljebris:Aprea AB: Employment. Alfredsson:Aprea AB: Employment. Lindman:Aprea AB: Employment. Uustalu:Aprea AB: Employment. Wiman:Aprea AB: Co-founder, shareholder, and member of the board. Uhlin:Aprea AB: Employment.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 1142-1142
Author(s):  
Jennifer Totman ◽  
Dorothy Brach ◽  
Vinny Motwani ◽  
Selene Howe ◽  
Emily Deutschman ◽  
...  

Abstract Introduction: SETD2 is the only known histone methyltransferase (HMT) capable of catalyzing H3K36 trimethylation (H3K36me3) in vivo. It plays an important role in several biological processes including B cell development and maturation, leading to the hypothesis that SETD2 inhibition in these settings could provide anti-tumor effects. The normal process of B cell development/maturation renders B cells susceptible to genetic vulnerabilities that can result in a dysregulated epigenome and tumorigenesis, including in multiple myeloma (MM) and diffuse large B-cell lymphoma (DLBCL). For example, 15%-20% of MM harbors the high risk (4;14) chromosomal translocation, resulting in high expression of the multiple myeloma SET domain (MMSET) gene. MMSET is an HMT that catalyzes H3K36me1 and H3K36me2 formation and extensive scientific work has established overexpressed MMSET as a key factor in t(4;14) myeloma pathogenesis. To the best of our knowledge MMSET has eluded drug discovery efforts, however, since t(4;14) results in high levels of the H3K36me2 substrate for SETD2, inhibiting SETD2 offers promise for targeting the underlying oncogenic mechanism driven by MMSET overexpression in t(4;14) MM patients. In addition, SETD2 loss of function mutations described to date in leukemia and DLBCL are always heterozygous, suggesting a haploinsufficient tumor suppressor role for SETD2. This observation points to a key role for SETD2 in leukemia and lymphoma biology and suggests that therapeutic potential of SETD2 inhibition may also exist in these or similar settings. EZM0414 is a first-in-class, potent, selective, orally bioavailable small molecule inhibitor of the enzymatic activity of SETD2. We explored the anti-tumor effects of SETD2 inhibition with EZM0414 in MM and DLBCL preclinical studies to validate its potential as a therapy in these tumor types. Methods: Cellular proliferation assays determined IC 50 values of EZM0414 in MM and DLBCL cell line panels. Cell line-derived xenograft preclinical models of MM and DLBCL were evaluated for tumor growth inhibition (TGI) in response to EZM0414. H3K36me3 levels were determined by western blot analysis to evaluate target engagement. Combinatorial potential of SETD2 inhibition with MM and DLBCL standard of care (SOC) agents was evaluated in 7-day cotreatment in vitro cellular assays. Results: Inhibition of SETD2 by EZM0414 results in potent anti-proliferative effects in a panel of MM and DLBCL cell lines. EZM0414 inhibited proliferation in both t(4;14) and non-t(4;14) MM cell lines, with higher anti-proliferative activity generally observed in the t(4;14) subset of MM cell lines. The median IC 50value for EZM0414 in t(4;14) cell lines was 0.24 μM as compared to 1.2 μM for non-t(4;14) MM cell lines. Additionally, inhibitory growth effects on DLBCL cell lines demonstrated a wide range of sensitivity with IC 50 values from 0.023 μM to >10 μM. EZM0414 resulted in statistically significant potent antitumor activity compared to the vehicle control in three MM and four DLBCL cell line-derived xenograft models. In the t(4;14) MM cell line-derived xenograft model, KMS-11, robust tumor growth regressions were observed at the top two doses with maximal TGI of 95%. In addition, two non-t(4;14) MM (RPMI-8226, MM.1S) and two DLBCL xenograft models (TMD8, KARPAS422) demonstrated > 75% TGI; with two additional DLBCL models (WSU-DLCL2, SU-DHL-10) exhibiting > 50% TGI in response to EZM0414. In all models tested, the antitumor effects observed correlated with reductions in intratumoral H3K36me3 levels demonstrating on-target inhibition of SETD2 methyltransferase activity in vivo. In vitro synergistic antiproliferative activity was also observed when EZM0414 was combined with certain SOC agents for MM and DLBCL. Conclusions: Targeting SETD2 with a small molecule inhibitor results in significantly reduced growth of t(4;14) MM, as well as non-t(4;14) MM and DLBCL cell lines, in both in vitro and in vivo preclinical studies. In addition, in vitro synergy was observed with EZM0414 and certain SOC agents commonly used in MM and DLBCL, supporting the combination of SETD2 inhibition with current MM and DLBCL therapies. This work provides the rationale for targeting SETD2 in B cell malignancies such as MM, especially t(4;14) MM, as well as DLBCL, and forms the basis for conducting Phase 1/1b clinical studies to evaluate the safety and activity of EZM0414 in patients with R/R MM and DLBCL. Disclosures Totman: Epizyme, Inc.: Current Employment, Current equity holder in publicly-traded company. Brach: Epizyme, Inc.: Current Employment, Current equity holder in publicly-traded company. Motwani: Epizyme, Inc.: Current Employment, Current equity holder in publicly-traded company. Howe: Epizyme, Inc.: Current Employment, Current equity holder in publicly-traded company. Deutschman: Epizyme, Inc.: Divested equity in a private or publicly-traded company in the past 24 months, Ended employment in the past 24 months. Lampe: Epizyme, Inc.: Divested equity in a private or publicly-traded company in the past 24 months, Ended employment in the past 24 months. Riera: Epizyme, Inc.: Current Employment, Current equity holder in publicly-traded company. Tang: Epizyme, Inc.: Divested equity in a private or publicly-traded company in the past 24 months, Ended employment in the past 24 months. Eckley: Epizyme, Inc.: Current Employment, Current equity holder in publicly-traded company. Alford: Epizyme, Inc.: Current Employment, Current equity holder in publicly-traded company. Duncan: Epizyme, Inc.: Divested equity in a private or publicly-traded company in the past 24 months, Ended employment in the past 24 months. Farrow: Epizyme, Inc.: Current Employment, Current equity holder in publicly-traded company. Dransfield: Epizyme, Inc.: Current Employment, Current equity holder in publicly-traded company. Raimondi: Epizyme, Inc.: Current Employment, Current equity holder in publicly-traded company. Thomeius: Foghorn Therapeutics: Current Employment, Current equity holder in publicly-traded company. Cosmopoulos: Epizyme, Inc.: Current Employment, Current equity holder in publicly-traded company. Kutok: Epizyme, Inc.: Current Employment, Current equity holder in publicly-traded company.


2018 ◽  
Vol 2 (23) ◽  
pp. 3516-3525 ◽  
Author(s):  
Kyle Runckel ◽  
Matthew J. Barth ◽  
Cory Mavis ◽  
Juan J. Gu ◽  
Francisco J. Hernandez-Ilizaliturri

Abstract Clinical observations suggest the existence of shared resistance pathways between rituximab and chemotherapy agents. To explore the mechanisms of rituximab resistance, our group created rituximab-resistant cell lines (RRCLs), which display altered expression of several inhibitor of apoptosis (IAP) family proteins. Here, we provide evidence to support pharmacologically targeting IAPs in lymphoma with LCL-161, a small molecule mimetic of the second mitochondria-derived activator of caspases (SMAC). The antitumor effect of LCL-161 was determined using luminescent adenosine triphosphate assays, flow cytometry, SCID mouse xenografts, and ex vivo patient biopsy sample studies. In vitro exposure to LCL-161 also resulted in a dose-dependent decrease in IAP levels, along with synergistic enhancement of the antitumor effect of cytotoxic chemotherapy, in rituximab-sensitive cell lines and RRCLs. In addition, LCL-161 increased the cytotoxic effect of the proteasome inhibitor carfilzomib in ex vivo lymphoma patient samples. The combination of LCL-161 with the chemotherapy regimen rituximab, gemcitabine, and vinorelbine (RGV) improved in vivo survival compared with RGV alone in severe combined immunodeficient mice implanted with RRCLs but not in animals implanted with rituximab-sensitive cell lines. In summary, LCL-161 exhibits synergistic antitumor activity in both in vitro and in vivo models of resistant lymphoma. Our data support further preclinical investigation of LCL-161 as a novel antilymphoma agent.


Author(s):  
Cristina Di Giorgio ◽  
Rosalinda Roselli ◽  
Michele Biagioli ◽  
Silvia Marchianò ◽  
Eleonora Distrutti ◽  
...  

Abstract: Advancements in stem cell research have enabled the establishment of three-dimensional (3D) primary cell cultures, known as organoids. These culture systems follow the organization of an in vivo organ, as they enclose the different epithelial cell lines of which it is normally composed. Generation of these 3D cultures has bridged the gap between in vitro models, made up by two-dimensional (2D) cancer cell lines cultures, and in vivo animal models, that have major differences with human diseases. Organoids are increasingly used as a model to study colonization of gastric mucosa by infectious agents and to better understand host-microbe interactions and the molecular events that lead to infection, pathogen-epithelial cells interactions and mechanisms of gastric mucosal injury. In this review we will focus on the role of organoids as a tool to investigate molecular interactions of Helicobacter (H.) pylori and Epstein Barr Virus (EBV) and gastric mucosa and how these infections, that affect ≈ 45% of the world population, might progress to gastric cancer, a highly prevalent cancer and the third leading cause of cancer death.


Molecules ◽  
2021 ◽  
Vol 26 (6) ◽  
pp. 1677
Author(s):  
Mohamed Bouhrim ◽  
Hayat Ouassou ◽  
Salima Boutahiri ◽  
Nour Elhouda Daoudi ◽  
Hamza Mechchate ◽  
...  

Opuntia dillenii Ker Gawl. is one of the medicinal plants used for the prevention and treatment of diabetes mellitus (DM) in Morocco. This study aims to investigate the antihyperglycemic effect of Opuntia dillenii seed oil (ODSO), its mechanism of action, and any hypoglycemic risk and toxic effects. The antihyperglycemic effect was assessed using the OGTT test in normal and streptozotocin (STZ)-diabetic rats. The mechanisms of action were explored by studying the effect of ODSO on the intestinal absorption of d-glucose using the intestinal in situ single-pass perfusion technique. An Ussing chamber was used to explore the effects of ODSO on intestinal sodium-glucose cotransporter 1 (SGLT1). Additionally, ODSO’s effect on carbohydrate degrading enzymes, pancreatic α-amylase, and intestinal α-glucosidase was evaluated in vitro and in vivo using STZ-diabetic rats. The acute toxicity test on mice was performed, along with a single-dose hypoglycemic effect test. The results showed that ODSO significantly attenuated the postprandial hyperglycemia in normal and STZ-diabetic rats. Indeed, ODSO significantly decreased the intestinal d-glucose absorption in situ. The ex vivo test (Ussing chamber) showed that the ODSO significantly blocks the SGLT1 (IC50 = 60.24 µg/mL). Moreover, ODSO indu\ced a significant inhibition of intestinal α-glucosidase (IC50 = 278 ± 0.01 µg/mL) and pancreatic α-amylase (IC50 = 0.81 ± 0.09 mg/mL) in vitro. A significant decrease of postprandial hyperglycemia was observed in sucrose/starch-loaded normal and STZ-diabetic ODSO-treated rats. On the other hand, ODSO had no risk of hypoglycemia on the basal glucose levels in normal rats. Therefore, no toxic effect was observed in ODSO-treated mice up to 7 mL/kg. The results of this study suggest that ODSO could be suitable as an antidiabetic functional food.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Matthias Miederer ◽  
Stefanie Pektor ◽  
Isabelle Miederer ◽  
Nicole Bausbacher ◽  
Isabell Sofia Keil ◽  
...  

Abstract Background RNA-based vaccination strategies tailoring immune response to specific reactions have become an important pillar for a broad range of applications. Recently, the use of lipid-based nanoparticles opened the possibility to deliver RNA to specific sites within the body, overcoming the limitation of rapid degradation in the bloodstream. Here, we have investigated whether small animal PET/MRI can be employed to image the biodistribution of RNA-encoded protein. For this purpose, a reporter RNA coding for the sodium-iodide-symporter (NIS) was in vitro transcribed in cell lines and evaluated for expression. RNA-lipoplex nanoparticles were then assembled by complexing RNA with liposomes at different charge ratios, and functional NIS protein translation was imaged and quantified in vivo and ex vivo by Iodine-124 PET upon intravenous administration in mice. Results NIS expression was detected on the membrane of two cell lines as early as 6 h after transfection and gradually decreased over 48 h. In vivo and ex vivo PET/MRI of anionic spleen-targeting or cationic lung-targeting NIS-RNA lipoplexes revealed a visually detectable rapid increase of Iodine-124 uptake in the spleen or lung compared to control-RNA-lipoplexes, respectively, with minimal background in other organs except from thyroid, stomach and salivary gland. Conclusions The strong organ selectivity and high target-to-background acquisition of NIS-RNA lipoplexes indicate the feasibility of small animal PET/MRI to quantify organ-specific delivery of RNA.


Sign in / Sign up

Export Citation Format

Share Document