scholarly journals Genome-Wide Identification and Characterization of the Trehalose-6-phosphate Synthetase (TPS) Gene Family in Watermelon (Citrullus lanatus) and Their Transcriptional Responses to Salt Stress

2021 ◽  
Vol 23 (1) ◽  
pp. 276
Author(s):  
Gaopeng Yuan ◽  
Junpu Liu ◽  
Guolin An ◽  
Weihua Li ◽  
Wenjing Si ◽  
...  

With the increase in watermelon cultivation area, there is an urgent need to explore enzymatic and genetic resources for the sustainable development of watermelon, especially under salt stress. Among the various compounds known, trehalose plays an important role in regulating abiotic stress tolerances in diverse organisms, including plants. Therefore, the present study comprehensively analyzed the trehalose-6-phosphate synthase (TPS) gene family in watermelon. The study analyzed the functional classification, evolutionary characteristics, and expression patterns of the watermelon TPS genes family. Seven ClTPSs were identified and classified into two distinct classes according to gene structure and phylogeny. Evolutionary analysis suggested the role of purifying selection in the evolution of the TPS family members. Further, cis-acting elements related to plant hormones and abiotic stress were identified in the promoter region of the TPS genes. The tissue-specific expression analysis showed that ClTPS genes were widely expressed in roots, stems, leaves, flowers, and fruits, while ClTPS3 was significantly induced under salt stress. The overexpression of ClTPS3 in Arabidopsis thaliana significantly improved salt tolerance. Finally, the STRING functional protein association networks suggested that the transcription factor ClMYB and ClbHLH regulate ClTPS3. Thus, the study indicates the critical role of ClTPS3 in watermelon response to salt stress.

2020 ◽  
Vol 45 (2) ◽  
Author(s):  
Sijia Liu ◽  
Fei Tian ◽  
Cunfang Zhang ◽  
Zhigang Qiao ◽  
Kai Zhao

AbstractObjectiveThe Glucose 6-phosphatase (G6Pase) catalytic subunit (G6PC) catalyzes glucose 6-phosphate (G6P) to inorganic phosphate and glucose, playing a critical role in endogenous energy supply. Here, the G6PC gene family was investigated and characterized in common carp (Cyprinus carpio).MethodsSequence alignment and phylogenetic analysis were performed using MEGA5. The HMM profiles, motif structure were analyzed using Pfam and MEME, respectively. Quantitative real-time PCR was used to test the expression profiles.ResultsFour assumptive members of G6PC family in common carp whole-genome sequence were identified as cg6pca.1, cg6pca.2a, cg6pca.2b and cg6pcb which were classified into g6pca and g6pcb subtypes, respectively. Evolutionary analysis revealed that cg6pca.2a and cg6pca.2b have a closer evolutionary relationship, and the same subtype members have higher homology among different species. A classical PAP2-glucose phosphates domain is found in four genes and were highly conserved. The expression patterns revealed that only cg6pca.2a elevated significantly after 12 and 24 h of both starvation and cold treatment (p < 0.05).ConclusionsThis study performed a comprehensive analysis of G6PC gene family in common carp. Moreover, cg6pca.2 may be the major functional gene in cold and fasting stress. And the transfactors, PLAG1 and Sox8, may be concerned with expression regulation of cg6pca.2.


2020 ◽  
Author(s):  
Jingping Yuan ◽  
Changwei Shen ◽  
Jingjing Xin ◽  
Zhenxia Li ◽  
Xinzheng Li ◽  
...  

Abstract BackgroundPlant specific YABBY transcription factors have important biological roles in plant growth and abiotic stress. However, the identification of Cucurbita Linn. YABBY and their response to salt stress have not yet been reported. The gene number, gene distribution on chromosome, gene structure, protein conserved structure, protein motif and the cis-acting element of YABBY in three cultivars of Cucurbita Linn. were analyzed by bioinformatics tools, and their tissue expression patterns and expression profile under salt stress were analyzed.ResultsIn this study, 34 YABBY genes (11 CmoYABBYs in Cucurbita moschata, 12 CmaYABBYs in Cucurbita maxima, and 11 CpeYABBYs in Cucurbita pepo) were identified and they were divided into five subfamilies (YAB1/YAB3, YAB2, INO, CRC and YAB5). YABBYs in the same subfamily usually have similar gene structures (intron-exon distribution) and conserved domains. Chromosomal localization analysis showed that these CmoYABBYs, CmaYABBYs, and CpeYABBYs were unevenly distributed in 8, 9, and 9 chromosomes of 21 chromosomes, respectively. Total of 6 duplicated gene pairs, and they all experienced segmental duplication events. Cis-acting element analysis showed that some Cucurbita Linn. YABBYs were associated with at least one of plant hormone response, plant growth, and abiotic stress response. Transcriptional profiles of CmoYABBYs and CmaYABBYs in roots, stems, leaves, and fruits, and CpeYABBYs in seed and fruit mesocarp showed that YABBYs of Cucurbita Linn. had tissue specificity. Finally, the transcriptional profile of 11 CmoYABBYs in leaf and qRT-PCR analysis of CmoYABBYs in root under salt stress indicated that some genes may play an important role in salt stress.ConclusionsGenome-wide identification and expression analysis of YABBYs revealed the characteristics of YABBY gene family in three cultivars of Cucurbita Linn.. Transcriptome and qRT-PCR analysis revealed the response of the CmoYABBYs to salt stress.This provides a theoretical basis for the functional research and utilization of YABBY genes in Cucurbita Linn..


2020 ◽  
Author(s):  
Peisen Su ◽  
Jun Yan ◽  
Wen Li ◽  
Liang Wang ◽  
Jinxiao Zhao ◽  
...  

Abstract Background: Salt and drought are the main abiotic stresses that restrict the yield of crops. Peroxidases (PRXs) are involved in various abiotic stress responses. Furthermore, only few wheat PRXs have been characterized in the mechanism of the abiotic stress response.Results: In this study, a novel wheat peroxidase (PRX) gene named TaPRX-2A, a member of wheat class III PRX gene family, was cloned and its response to salt stress was characterized. Based on the identification and evolutionary analysis of class III PRXs in 12 plants, we proposed an evolutionary model for TaPRX-2A, suggesting that occurrence of some exon fusion events during evolution. We also detected the positive selection of PRX domain in 13 PRXs involving our evolutionary model, and found 2 or 6 positively selected sites during TaPRX-2A evolution. Quantitative reverse transcription–polymerase chain reaction (qRT–PCR) results showed that TaPRX-2A exhibited relatively higher expression levels in root tissue than those exhibited in leaf and stem tissues. TaPRX-2A expression was also induced by abiotic stresses and hormone treatments such as polyethylene glycol 6000, NaCl, hydrogen peroxide (H2O2), salicylic acid (SA), methyljasmonic acid (MeJA) and abscisic acid (ABA). Transgenic wheat plants with overexpression of TaPRX-2A showed higher tolerance to salt stress than wild-type (WT) plants. Confocal microscopy revealed that TaPRX-2A-eGFP was mainly localized in cell nuclei. Survival rate, relative water content, and shoot length were higher in TaPRX-2A-overexpressing wheat than in the WT wheat, whereas root length was not significantly different. The activities of s superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) were enhanced in TaPRX-2A-overexpressing wheat compared with those in the WT wheat, resulting in the reduction of reactive oxygen species (ROS) accumulation and malondialdehyde (MDA) content. The expression levels of downstream stress-related genes showed that RD22, TLP4, ABAI, GST22, FeSOD, and CAT exhibited higher expressions in TaPRX-2A-overexpressing wheat than in WT under salt stress.Conclusions: The results show that TaPRX-2A plays a positive role in the response to salt stress by scavenging ROS and regulating stress-related genes.


2020 ◽  
Author(s):  
Peisen Su ◽  
Jun Yan ◽  
Wen Li ◽  
Liang Wang ◽  
Jinxiao Zhao ◽  
...  

Abstract Background: Salt and drought are the main abiotic stresses that restrict the yield of crops. Peroxidases (PRXs) are involved in various abiotic stress responses. Furthermore, only few wheat PRXs have been characterized in the mechanism of the abiotic stress response.Results: In this study, a novel wheat peroxidase (PRX) gene named TaPRX-2A, a member of wheat class III PRX gene family, was cloned and its response to salt stress was characterized. Based on the identification and evolutionary analysis of class III PRXs in 12 plants, we proposed an evolutionary model for TaPRX-2A, suggesting that occurrence of some exon fusion events during evolution. We also detected the positive selection of PRX domain in 13 PRXs involving our evolutionary model, and found 2 or 6 positively selected sites during TaPRX-2A evolution. Quantitative reverse transcription–polymerase chain reaction (qRT–PCR) results showed that TaPRX-2A exhibited relatively higher expression levels in root tissue than those exhibited in leaf and stem tissues. TaPRX-2A expression was also induced by abiotic stresses and hormone treatments such as polyethylene glycol 6000, NaCl, hydrogen peroxide (H2O2), salicylic acid (SA), methyljasmonic acid (MeJA) and abscisic acid (ABA). Transgenic wheat plants with overexpression of TaPRX-2A showed higher tolerance to salt stress than wild-type (WT) plants. Confocal microscopy revealed that TaPRX-2A-eGFP was mainly localized in cell nuclei. Survival rate, relative water content, and shoot length were higher in TaPRX-2A-overexpressing wheat than in the WT wheat, whereas root length was not significantly different. The activities of s superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) were enhanced in TaPRX-2A-overexpressing wheat compared with those in the WT wheat, resulting in the reduction of reactive oxygen species (ROS) accumulation and malondialdehyde (MDA) content. The expression levels of downstream stress-related genes showed that RD22, TLP4, ABAI, GST22, FeSOD, and CAT exhibited higher expressions in TaPRX-2A-overexpressing wheat than in WT under salt stress.Conclusions: The results show that TaPRX-2A plays a positive role in the response to salt stress by scavenging ROS and regulating stress-related genes.


2021 ◽  
Vol 12 ◽  
Author(s):  
Margaret L. Shiraku ◽  
Richard Odongo Magwanga ◽  
Xiaoyan Cai ◽  
Joy Nyangasi Kirungu ◽  
Yanchao Xu ◽  
...  

The acyl-coenzyme A oxidase 3 (ACX3) gene involved in the β-oxidation pathway plays a critical role in plant growth and development as well as stress response. Earlier on, studies focused primarily on the role of β-oxidation limited to fatty acid breakdown. However, ACX3 peroxisomal β-oxidation pathways result in a downstream cascade of events that act as a transduction of biochemical and physiological responses to stress. A role that is yet to be studied extensively. In this study, we identified 20, 18, 22, 23, 20, 11, and 9 proteins in Gossypium hirsutum, G. barbadense, G. tomentosum, G. mustelinum, G. darwinii, G. arboretum, and G. raimondii genomes, respectively. The tetraploid cotton genome had protein ranging between 18 and 22, while diploids had between 9 and 11. After analyzing the gene family evolution or selection pressure, we found that this gene family undergoes purely segmental duplication both in diploids and tetraploids. W-Box (WRKY-binding site), ABRE, CAAT–Box, TATA-box, MYB, MBS, LTR, TGACG, and CGTCA-motif are abiotic stress cis-regulatory elements identified in this gene family. All these are the binding sites for abiotic stress transcription factors, indicating that this gene is essential. Genes found in G. hirsutum showed a clear response to drought and salinity stress, with higher expression under drought and salt stress, particularly in the leaf and root, according to expression analysis. We selected Gh_DO1GO186, one of the highly expressed genes, for functional characterization. We functionally characterized the GhACX3 gene through overexpression and virus-induced gene silencing (VIGS). Overexpression of this gene enhanced tolerance under stress, which was exhibited by the germination assay. The overexpressed seed growth rate was faster relative to control under drought and salt stress conditions. The survival rate was also higher in overexpressed plants relative to control plants under stress. In contrast, the silencing of the GhACX3 gene in cotton plants resulted in plants showing the stress susceptibility phenotype and reduced root length compared to control. Biochemical analysis also demonstrated that GhACX3-silenced plants experienced oxidative stress while the overexpressed plants did not. This study has revealed the importance of the ACX3 family during stress tolerance and can breed stress-resilient cultivar.


Biology ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 992
Author(s):  
Jianwen Wang ◽  
Weijie Zhang ◽  
Yufei Cheng ◽  
Liguo Feng

LATERAL ORGAN BOUNDARIES DOMAIN (LBD) transcription factors are regulators of lateral organ morphogenesis, boundary establishment, and secondary metabolism in plants. The responsive role of LBD gene family in plant abiotic stress is emerging, whereas its salt stress responsive mechanism in Rosa spp. is still unclear. The wild plant of Rosa rugosa Thunb., which exhibits strong salt tolerance to stress, is an ideal material to explore the salt-responsive LBD genes. In our study, we identified 41 RrLBD genes based on the R. rugosa genome. According to phylogenetic analysis, all RrLBD genes were categorized into Classes I and II with conserved domains and motifs. The cis-acting element prediction revealed that the promoter regions of most RrLBD genes contain defense and stress responsiveness and plant hormone response elements. Gene expression patterns under salt stress indicated that RrLBD12c, RrLBD25, RrLBD39, and RrLBD40 may be potential regulators of salt stress signaling. Our analysis provides useful information on the evolution and development of RrLBD gene family and indicates that the candidate RrLBD genes are involved in salt stress signaling, laying a foundation for the exploration of the mechanism of LBD genes in regulating abiotic stress.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Baojun CHEN ◽  
Junjie ZHAO ◽  
Guoyong FU ◽  
Xinxin PEI ◽  
Zhaoe PAN ◽  
...  

Abstract Background Cotton fibers are single-celled extensions of the seed epidermis, a model tissue for studying cytoskeleton. Tubulin genes play a critical role in synthesizing the microtubules (MT) as a core element of the cytoskeleton. However, there is a lack of studies concerning the systematic characterization of the tubulin gene family in cotton. Therefore, the identification and portrayal of G. hirsutum tubulin genes can provide key targets for molecular manipulation in cotton breeding. Result In this study, we investigated all tubulin genes from different plant species and identified 98 tubulin genes in G. hirsutum. Phylogenetic analysis showed that tubulin family genes were classified into three subfamilies. The protein motifs and gene structure of α-, β-tubulin genes are more conserved compared with γ-tubulin genes. Most tubulin genes are located at the proximate ends of the chromosomes. Spatiotemporal expression pattern by transcriptome and qRT-PCR analysis revealed that 12 α-tubulin and 7 β-tubulin genes are specifically expressed during different fiber development stages. However, Gh.A03G027200, Gh.D03G169300, and Gh.A11G258900 had differential expression patterns at distinct stages of fiber development in varieties J02508 and ZRI015. Conclusion In this study, the evolutionary analysis showed that the tubulin genes were divided into three clades. The genetic structures and molecular functions were highly conserved in different plants. Three candidate genes, Gh.A03G027200, Gh.D03G169300, and Gh.A11G258900 may play a key role during fiber development complementing fiber length and strength.


2019 ◽  
Author(s):  
Qian Wan ◽  
Lu Luo ◽  
Xiurong Zhang ◽  
Yuying Lv ◽  
Suqing Zhu ◽  
...  

Abstract Background Nuclear factor Y (NF-Y) gene family consists of NF-YA, NF-YB and NF-YC subfamilies. Many members of NF-Y family have been involved in plant development processes, phytohormone signaling and tolerance to stresses in Arabidopsis and other plant species. However, little attention has been given in peanut. Results A total of 33 AhNF-Y genes (AhNF-Ys) were identified and distributed on 16 chromosomes. A phylogenetic analysis indicated that NF-Y genes prossessed highly conservatism in different plants. Gene duplication analyze indicated that only segmental duplication were detected. The abiotic stress-related regulatory elements analysis showed that AhNF-Ys, except for AhNF-YB6, contained at least one abiotic stress response element. With RNA-seq data, the tissue/organ-specific expression and differential expression profiling under salt stress were analyzed, indicating that six selected AhNF-Y gene may play potential roles in the regulation of salt stress response. qRT-PCR results suggested that these AhNF-Y genes also responded to osmotic, ABA (Abscisic Acid) and SA (Salicylic acid) stresses. Conclusions In this study, thirty three AhNF-Y genes were identified in cultivated peanut and the phylogeny, gene structures, motif composition, chromosomal location, gene duplication, stress-related regulatory elements, and expression patterns were also examined. These results may contribute to functional characterization of AhNF-Y genes in further research.


2020 ◽  
Author(s):  
Peisen Su ◽  
Jun Yan ◽  
Wen Li ◽  
Liang Wang ◽  
Jinxiao Zhao ◽  
...  

Abstract Background: Salt and drought are the main abiotic stresses that restrict the yield of crops. Peroxidases (PRXs) are involved in various abiotic stress responses. Furthermore, only few wheat PRXs have been characterized in the mechanism of the abiotic stress response.Results: In this study, a novel wheat peroxidase (PRX) gene named TaPRX-2A, a member of wheat class III PRX gene family, was cloned and its response to salt stress was characterized. Based on the identification and evolutionary analysis of class III PRXs in 12 plants, we proposed an evolutionary model for TaPRX-2A, suggesting that occurrence of some exon fusion events during evolution. We also detected the positive selection of PRX domain in 13 PRXs involving our evolutionary model, and found 2 or 6 positively selected sites during TaPRX-2A evolution. Quantitative reverse transcription–polymerase chain reaction (qRT–PCR) results showed that TaPRX-2A exhibited relatively higher expression levels in root tissue than those exhibited in leaf and stem tissues. TaPRX-2A expression was also induced by abiotic stresses and hormone treatments such as polyethylene glycol 6000, NaCl, hydrogen peroxide (H2O2), salicylic acid (SA), methyljasmonic acid (MeJA) and abscisic acid (ABA). Transgenic wheat plants with overexpression of TaPRX-2A showed higher tolerance to salt stress than wild-type (WT) plants. Confocal microscopy revealed that TaPRX-2A-eGFP was mainly localized in cell nuclei. Survival rate, relative water content, and shoot length were higher in TaPRX-2A-overexpressing wheat than in the WT wheat, whereas root length was not significantly different. The activities of s superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) were enhanced in TaPRX-2A-overexpressing wheat compared with those in the WT wheat, resulting in the reduction of reactive oxygen species (ROS) accumulation and malondialdehyde (MDA) content. The expression levels of downstream stress-related genes showed that RD22, TLP4, ABAI, GST22, FeSOD, and CAT exhibited higher expressions in TaPRX-2A-overexpressing wheat than in WT under salt stress.Conclusions: The results show that TaPRX-2A plays a positive role in the response to salt stress by scavenging ROS and regulating stress-related genes.


2020 ◽  
Author(s):  
Huilin Xiao ◽  
Chaoping Wang ◽  
Nadeem Khan ◽  
Mengxia Chen ◽  
Weihong Fu ◽  
...  

Abstract Background : The class III peroxidases (PODs) are involved in a broad range of physiological activities, such as the formation of lignin, cell wall components, defense against pathogenicity or herbivore, and abiotic stress tolerance. The POD family members have been well-studied and characterized by bioinformatics analysis in several plant species, but no previous genome-wide analysis has been carried out of this gene family in grapevine to date. Results : We comprehensively identified 47 PODs in the grapevine genome and are further classified into 7 subgroups based on their phylogenetic analysis. Results of motif composition and gene structure organization analysis revealed that PODs in the same subgroup shared similar conjunction while the protein sequences were highly conserved. Intriguingly, the integrated analysis of chromosomal mapping and gene collinearity analysis proposed that both dispersed and tandem duplication events contributed to the expansion of PODs in grapevine. Also, the gene duplication analysis suggested that most of the genes (20) were dispersed followed by (15) tandem, (9) segmental or whole-genome duplication, and (3) proximal, respectively. The evolutionary analysis of PODs, such as Ka/Ks ratio of the 15 duplicated gene pairs were less than 1.00, indicated that most of the gene pairs exhibiting purifying selection and 7 pairs underwent positive selection with value greater than 1.00. The Gene Ontology Enrichment (GO), Kyoto Encyclopedia of Genes Genomics (KEGG) analysis, and cis-elements prediction also revealed the positive functions of PODs in plant growth and developmental activities, and response to stress stimuli. Further, based on the publically available RNA-sequence data, the expression patterns of PODs in tissue-specific response during several developmental stages revealed diverged expression patterns. Subsequently, 30 genes were selected for RT-PCR validation in response to (NaCl, drought, and ABA), which showed their critical role in grapevine. Conclusions : In conclusion, we predict that these results will lead to novel insights regarding genetic improvement of grapevine.


Sign in / Sign up

Export Citation Format

Share Document