scholarly journals Downregulation of Methionine Cycle Genes MAT1A and GNMT Enriches Protein-Associated Translation Process and Worsens Hepatocellular Carcinoma Prognosis

2022 ◽  
Vol 23 (1) ◽  
pp. 481
Author(s):  
Po-Ming Chen ◽  
Cheng-Hsueh Tsai ◽  
Chieh-Cheng Huang ◽  
Hau-Hsuan Hwang ◽  
Jian-Rong Li ◽  
...  

The major biological methyl donor, S-adenosylmethionine (adoMet) synthesis occurs mainly in the liver. Methionine adenosyltransferase 1A (MAT1A) and glycine N-methyltransferase (GNMT) are two key enzymes involved in the functional implications of that variation. We collected 42 RNA-seq data from paired hepatocellular carcinoma (HCC) and its adjacent normal liver tissue from the Cancer Genome Atlas (TCGA). There was no mutation found in MAT1A or GNMT RNA in the 42 HCC patients. The 11,799 genes were annotated in the RNA-Seq data, and their expression levels were used to investigate the phenotypes of low MAT1A and low GNMT by Gene Set Enrichment Analysis (GSEA). The REACTOME_TRANSLATION gene set was enriched and visualized in a heatmap along with corresponding differences in gene expression between low MAT1A versus high MAT1A and low GNMT versus high GNMT. We identified 43 genes of the REACTOME_TRANSLATION gene set that are powerful prognosis factors in HCC. The significantly predicted genes were referred into eukaryotic translation initiation (EIF3B, EIF3K), eukaryotic translation elongation (EEF1D), and ribosomal proteins (RPs). Cell models expressing various MAT1A and GNMT proved that simultaneous restoring the expression of MAT1A and GNMT decreased cell proliferation, invasion, as well as the REACTOME_TRANSLATION gene EEF1D, consistent with a better prognosis in human HCC. We demonstrated new findings that downregulation or defect in MAT1A and GNMT genes can enrich the protein-associated translation process that may account for poor HCC prognosis. This is the first study demonstrated that MAT1A and GNMT, the 2 key enzymes involved in methionine cycle, could attenuate the function of ribosome translation. We propose a potential novel mechanism by which the diminished GNMT and MAT1A expression may confer poor prognosis for HCC.

2021 ◽  
Author(s):  
Xinyu Gu ◽  
Haibo Zhou ◽  
Qingfei Chu ◽  
Qiuxian Zheng ◽  
Jing Wang ◽  
...  

Abstract Background: 5-Methylcytosine (m5C) plays essential roles in hepatocellular carcinoma (HCC), but the association between m5C regulation and immune cell infiltration in HCC has not yet been clarified.Methods: In this study, we analysed 371 patients with HCC from The Cancer Genome Atlas (TCGA) database, and the expression of 13 m5C regulators was investigated. Additionally, gene set variation analysis (GSVA), unsupervised clustering analysis, single-sample gene set enrichment analysis (ssGSEA), correlation analysis, and immunohistochemical (IHC) staining were performed.Results: Among the 371 patients, 41 had mutations in m5C regulators, the frequency of which was 11.26%. Then, we identified three m5C modification patterns that had obvious tumour microenvironment (TME) cell infiltration characteristics. Cluster-1 had an immune rejection phenotype; Cluster-2 had an immunoinflammatory phenotype; and Cluster-3 had an immune desert phenotype. In addition, we found that DNMT1 was highly expressed in tumour tissues compared with normal tissues in a tissue microarray (TMA) and that it was positively correlated with many TME-infiltrating immune cells. High expression of the m5C regulator DNMT1 was related to a poor prognosis in patients with HCC. Furthermore, we developed three Immu-clusters that were consistent with the immune characteristics of the m5C methylation modification patterns. We also discovered differences in the levels of immune cells and expression of chemokines and cytokines among the three Immu-clusters.Conclusions: Our work revealed the association between m5C modification and immune regulators in the TME. These findings also suggest that DNMT1 has great potential as a prognostic biomarker and therapeutic target for HCC.


2021 ◽  
Vol 11 ◽  
Author(s):  
Tian-Hao Li ◽  
Cheng Qin ◽  
Bang-Bo Zhao ◽  
Hong-Tao Cao ◽  
Xiao-Ying Yang ◽  
...  

Methyltransferase-like 18 (METTL18), a METTL family member, is abundant in hepatocellular carcinoma (HCC). Studies have indicated the METTL family could regulate the progress of diverse malignancies while the role of METTL18 in HCC remains unclear. Data of HCC patients were acquired from the cancer genome atlas (TCGA) and gene expression omnibus (GEO). The expression level of METTL18 in HCC patients was compared with normal liver tissues by Wilcoxon test. Then, the logistic analysis was used to estimate the correlation between METTL18 and clinicopathological factors. Besides, Gene Ontology (GO), Gene Set Enrichment Analysis (GSEA), and single-sample Gene Set Enrichment Analysis (ssGSEA) were used to explore relevant functions and quantify the degree of immune infiltration for METTL18. Univariate and Multivariate Cox analyses and Kaplan–Meier analysis were used to estimate the association between METTL18 and prognosis. Besides, by cox multivariate analysis, a nomogram was conducted to forecast the influence of METTL18 on survival rates. METTL18-high was associated with Histologic grade, T stage, Pathologic stage, BMI, Adjacent hepatic tissue inflammation, AFP, Vascular invasion, and TP53 status (P < 0.05). HCC patients with METTL18-high had a poor Overall-Survival [OS; hazard ratio (HR): 1.87, P < 0.001), Disease-Specific Survival (DSS, HR: 1.76, P = 0.015), and Progression-Free Interval (PFI, HR: 1.51, P = 0.006). Multivariate analysis demonstrated that METTL18 was an independent factor for OS (HR: 2.093, P < 0.001), DSS (HR: 2.404, P = 0.015), and PFI (HR: 1.133, P = 0.006). Based on multivariate analysis, the calibration plots and C-indexes of nomograms showed an efficacious predictive effect for HCC patients. GSEA demonstrated that METTL18-high could activate G2M checkpoint, E2F targets, KRAS signaling pathway, and Mitotic Spindle. There was a positive association between the METTL18 and abundance of innate immunocytes (T helper 2 cells) and a negative relation to the abundance of adaptive immunocytes (Dendritic cells, Cytotoxic cells etc.). Finally, we uncovered knockdown of METTL18 significantly suppressed the proliferation, invasion, and migration of HCC cells in vitro. This research indicates that METTL18 could be a novel biomarker to evaluate HCC patients’ prognosis and an important regulator of immune responses in HCC.


Author(s):  
Xinyu Gu ◽  
Haibo Zhou ◽  
Qingfei Chu ◽  
Qiuxian Zheng ◽  
Jing Wang ◽  
...  

Background: 5-Methylcytosine (m5C) plays essential roles in hepatocellular carcinoma (HCC), but the association between m5C regulation and immune cell infiltration in HCC has not yet been clarified.Methods: In this study, we analysed 371 patients with HCC from The Cancer Genome Atlas (TCGA) database, and the expression of 13 m5C regulators was investigated. Additionally, gene set variation analysis (GSVA), unsupervised clustering analysis, single-sample gene set enrichment analysis (ssGSEA), correlation analysis, and immunohistochemical (IHC) staining were performed.Results: Among the 371 patients, 41 had mutations in m5C regulators, the frequency of which was 11.26%. Compared with normal hepatic tissues, the expression of m5C regulators with copy number variations (CNVs) expansion was significantly higher than that in HCC tissues. Then, we identified three m5C modification patterns that had obvious tumour microenvironment (TME) cell infiltration characteristics. The prognostic analysis of the three major m5C modification subtypes showed that Cluster-2 had a clear survival advantage over the others. In addition, we found that DNMT1 was highly expressed in tumour tissues compared with normal tissues in a tissue microarray (TMA) and that it was positively correlated with many TME-infiltrating immune cells. High expression of the m5C regulator DNMT1 was related to a poor prognosis in patients with HCC. Furthermore, we developed three distinct Immu-clusters. Importantly, mRNAs related to the transcription of growth factor β (TGF-β)/EMT pathway were significantly up-regulated in Immu-cluster 2, indicating that this cluster is considered to be the immune rejection phenotype. Immu-cluster 3 showed elevated expression of mRNAs related to immune checkpoint genes.Conclusion: Our work revealed the association between m5C modification and immune regulators in the TME. These findings also suggest that DNMT1 has great potential as a prognostic biomarker and therapeutic target for HCC.


Genes ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 120
Author(s):  
Yiyun Sun ◽  
Dandan Xu ◽  
Chundong Zhang ◽  
Yitao Wang ◽  
Lian Zhang ◽  
...  

We previously demonstrated that proline-rich protein 11 (PRR11) and spindle and kinetochore associated 2 (SKA2) constituted a head-to-head gene pair driven by a prototypical bidirectional promoter. This gene pair synergistically promoted the development of non-small cell lung cancer. However, the signaling pathways leading to the ectopic expression of this gene pair remains obscure. In the present study, we first analyzed the lung squamous cell carcinoma (LSCC) relevant RNA sequencing data from The Cancer Genome Atlas (TCGA) database using the correlation analysis of gene expression and gene set enrichment analysis (GSEA), which revealed that the PRR11-SKA2 correlated gene list highly resembled the Hedgehog (Hh) pathway activation-related gene set. Subsequently, GLI1/2 inhibitor GANT-61 or GLI1/2-siRNA inhibited the Hh pathway of LSCC cells, concomitantly decreasing the expression levels of PRR11 and SKA2. Furthermore, the mRNA expression profile of LSCC cells treated with GANT-61 was detected using RNA sequencing, displaying 397 differentially expressed genes (203 upregulated genes and 194 downregulated genes). Out of them, one gene set, including BIRC5, NCAPG, CCNB2, and BUB1, was involved in cell division and interacted with both PRR11 and SKA2. These genes were verified as the downregulated genes via RT-PCR and their high expression significantly correlated with the shorter overall survival of LSCC patients. Taken together, our results indicate that GLI1/2 mediates the expression of the PRR11-SKA2-centric gene set that serves as an unfavorable prognostic indicator for LSCC patients, potentializing new combinatorial diagnostic and therapeutic strategies in LSCC.


2021 ◽  
Vol 27 ◽  
Author(s):  
Aoshuang Qi ◽  
Mingyi Ju ◽  
Yinfeng Liu ◽  
Jia Bi ◽  
Qian Wei ◽  
...  

Background: Complex antigen processing and presentation processes are involved in the development and progression of breast cancer (BC). A single biomarker is unlikely to adequately reflect the complex interplay between immune cells and cancer; however, there have been few attempts to find a robust antigen processing and presentation-related signature to predict the survival outcome of BC patients with respect to tumor immunology. Therefore, we aimed to develop an accurate gene signature based on immune-related genes for prognosis prediction of BC.Methods: Information on BC patients was obtained from The Cancer Genome Atlas. Gene set enrichment analysis was used to confirm the gene set related to antigen processing and presentation that contributed to BC. Cox proportional regression, multivariate Cox regression, and stratified analysis were used to identify the prognostic power of the gene signature. Differentially expressed mRNAs between high- and low-risk groups were determined by KEGG analysis.Results: A three-gene signature comprising HSPA5 (heat shock protein family A member 5), PSME2 (proteasome activator subunit 2), and HLA-F (major histocompatibility complex, class I, F) was significantly associated with OS. HSPA5 and PSME2 were protective (hazard ratio (HR) < 1), and HLA-F was risky (HR > 1). Risk score, estrogen receptor (ER), progesterone receptor (PR) and PD-L1 were independent prognostic indicators. KIT and ACACB may have important roles in the mechanism by which the gene signature regulates prognosis of BC.Conclusion: The proposed three-gene signature is a promising biomarker for estimating survival outcomes in BC patients.


2020 ◽  
Author(s):  
Lili Fan ◽  
Han Lei ◽  
Ying Lin ◽  
Zhengwei Zhou ◽  
Guang Shu ◽  
...  

Abstract Background : Ovarian cancer (OC) is a serious tumor disease in gynecology. Many papers have reported that high tumor mutational burden (TMB) can generate many neoantigens to result in a higher degree of tumor immune infiltration, so our study aims to predict the key molecules in OC immunotherapy by combined TMB with immunoactivity-related gene. Method: We divided OC cases into two groups: the low & high TMB group hinged on the somatic mutation data from the Cancer Genome Atlas (TCGA). We also used single-sample gene set enrichment analysis (ssGSEA) scores of immune cell types to conduct unsupervised clustering of OC patients in the TCGA cohort and some of them were defined as the low & high immunity group. Besides, to further understand the function of these genes, we conducted Gene Ontology, Kyoto Encyclopedia of Genes and Genomes pathway, protein-protein interaction network, survival prognosis analysis and immune infiltration analysis. Finally, the effects on prognosis and immunotherapy in OC patients were explored by the Group on Earth Observations verification the patients' responses to immunotherapy. Results: We found that the higher the TMB was associated with the higher OC grades. Moreover, both high TMB and high immunity were significantly correlated with a good prognosis of OC. Then, 14 up-regulated differential expression genes (Up-DEGs) that were closely related to the prognosis of OC patients were screened according to the high TMB group and the high immunity group. Next, pathway analysis revealed that Up-DGEs were mainly involved in immune response and T cell proliferation. Finally, four genes had a good prognosis and were validated in the GEO dataset which included CXCL13, FCRLA, PLA2G2D, and MS4A1. We also identified that four genes had a good prognosis in melanoma patients treated with anti-PD-L1 and anti-CTLA-4 in the TIDE database. Conclusion: High TMB can promote immune cell infiltration and increases immune activity. And our analysis also demonstrated that the higher the TMB, the higher the immune activity, the better the prognosis of OC. Altogether, we found that CXCL13, FCRLA, PLA2G2D, and MS4A1 may be biomarkers for OC immunotherapy. Keywords: ovarian cancer, TMB, immune cells infiltration, survival prognosis.


2019 ◽  
Vol 28 (4) ◽  
pp. 439-447 ◽  
Author(s):  
Yan Jiao ◽  
Yanqing Li ◽  
Bai Ji ◽  
Hongqiao Cai ◽  
Yahui Liu

Background and Aims: Emerging studies indicate that long noncoding RNAs (lncRNAs) play a role as prognostic markers in many cancers, including liver cancer. Here, we focused on the lncRNA lung cancer-associated transcript 1 (LUCAT1) for liver cancer prognosis. Methods: RNA-seq and phenotype data were downloaded from the Cancer Genome Atlas (TCGA). Chisquare tests were used to evaluate the correlations between LUCAT1 expression and clinical features. Survival analysis and Cox regression analysis were used to compare different LUCAT1 expression groups (optimal cutoff value determined by ROC). The log-rank test was used to calculate the p-value of the Kaplan-Meier curves. A ROC curve was used to evaluate the diagnostic value. Gene Set Enrichment Analysis (GSEA) was performed, and competing endogenous RNA (ceRNA) networks were constructed to explore the potential mechanism. Results: Data mining of the TCGA -Liver Hepatocellular Carcinoma (LIHC) RNA-seq data of 371 patients showed the overexpression of LUCAT1 in cancerous tissue. High LUCAT1 expression was associated with age (p=0.007), histologic grade (p=0.009), T classification (p=0.022), and survival status (p=0.002). High LUCAT1 patients had a poorer overall survival and relapse-free survival than low LUCAT1 patients. Multivariate analysis identified LUCAT1 as an independent risk factor for poor survival. The ROC curve indicated modest diagnostic performance. GSEA revealed the related signaling pathways, and the ceRNA network uncovered the underlying mechanism. Conclusion: High LUCAT1 expression is an independent prognostic factor for liver cancer.


2021 ◽  
Vol 12 ◽  
Author(s):  
Zhuomao Mo ◽  
Daiyuan Liu ◽  
Dade Rong ◽  
Shijun Zhang

Background: Generally, hepatocellular carcinoma (HCC) exists in an immunosuppressive microenvironment that promotes tumor evasion. Hypoxia can impact intercellular crosstalk in the tumor microenvironment. This study aimed to explore and elucidate the underlying relationship between hypoxia and immunotherapy in patients with HCC.Methods: HCC genomic and clinicopathological datasets were obtained from The Cancer Genome Atlas (TCGA-LIHC), Gene Expression Omnibus databases (GSE14520) and International Cancer Genome Consortium (ICGC-LIRI). The TCGA-LIHC cases were divided into clusters based on single sample gene set enrichment analysis and hierarchical clustering. After identifying patients with immunosuppressive microenvironment with different hypoxic conditions, correlations between immunological characteristics and hypoxia clusters were investigated. Subsequently, a hypoxia-associated score was established by differential expression, univariable Cox regression, and lasso regression analyses. The score was verified by survival and receiver operating characteristic curve analyses. The GSE14520 cohort was used to validate the findings of immune cell infiltration and immune checkpoints expression, while the ICGC-LIRI cohort was employed to verify the hypoxia-associated score.Results: We identified hypoxic patients with immunosuppressive HCC. This cluster exhibited higher immune cell infiltration and immune checkpoint expression in the TCGA cohort, while similar significant differences were observed in the GEO cohort. The hypoxia-associated score was composed of five genes (ephrin A3, dihydropyrimidinase like 4, solute carrier family 2 member 5, stanniocalcin 2, and lysyl oxidase). In both two cohorts, survival analysis revealed significant differences between the high-risk and low-risk groups. In addition, compared to other clinical parameters, the established score had the highest predictive performance at both 3 and 5 years in two cohorts.Conclusion: This study provides further evidence of the link between hypoxic signals in patients and immunosuppression in HCC. Defining hypoxia-associated HCC subtypes may help reveal potential regulatory mechanisms between hypoxia and the immunosuppressive microenvironment, and our hypoxia-associated score could exhibit potential implications for future predictive models.


2021 ◽  
Vol 41 (4) ◽  
Author(s):  
Dengliang Lei ◽  
Yue Chen ◽  
Yang Zhou ◽  
Gangli Hu ◽  
Fang Luo

Abstract Hepatocellular carcinoma (HCC) is one of the most prevalent and lethal cancers worldwide. Neovascularization is closely related to the malignancy of tumors. We constructed a signature of angiogenesis-related long noncoding RNA (lncRNA) to predict the prognosis of patients with HCC. The lncRNA expression matrix of 424 HCC patients was downloaded from The Cancer Genome Atlas (TCGA). First, gene set enrichment analysis (GSEA) was used to distinguish the differentially expressed genes of the angiogenesis genes in liver cancer and adjacent tissues. Next, a signature of angiogenesis-related lncRNAs was constructed using univariate and multivariate analyses, and receiver operating characteristic (ROC) curves were used to assess the accuracy. The signature and relevant clinical information were used to construct the nomogram. A 5-lncRNA signature was highly correlated with overall survival (OS) in HCC patients and performed well in evaluations using the C-index, areas under the curve, and calibration curves. In summary, the 5-lncRNA model can serve as an accurate signature to predict the prognosis of patients with liver cancer, but its mechanism of action must be further elucidated by experiments.


2020 ◽  
Author(s):  
Mohamed Elshaer ◽  
Ahmed Hammad ◽  
Xiu Jun Wang ◽  
Xiuwen Tang

Abstract BackgroundKEAP1-NRF2 pathway alterations were identified in many cancers including, esophageal cancer (ESCA). Identifying biomarkers that are associated with mutations in this pathway will aid in defining this cancer subset; and hence in supporting precision and personalized medicine. MethodsIn this study, 182 tumor samples from the Cancer Genome Atlas (TCGA)-ESCA RNA-Seq V2 level 3 data were segregated into two groups KEAP1-NRF2-mutated (22) and wild-type (160).The two groups were subjected to differential gene expression analysis, and we performed Gene Set Enrichment Analysis (GSEA) to determine all significantly affected biological pathways. Then, the enriched gene set was integrated with the differentially expressed genes (DEGs) to identify a gene signature regulated by the KEAP1-NRF2 pathway in ESCA. Furthermore, we validated the gene signature using mRNA expression data of ESCA cell lines provided by the Cancer Cell Line Encyclopedia (CCLE). The identified signature was tested in 3 independent ESCA datasets to assess its prognostic value.ResultsWe identified 11 epithelial-mesenchymal transition (EMT) genes regulated by the KEAP1-NRF2 pathway in ESCA patients. Five of the 11 genes showed significant over-expression in KEAP1-NRF2-mutated ESCA cell lines. In addition, the over-expression of these five genes was significantly associated with poor survival in 3 independent ESCA datasets, including the TCGA-ESCA dataset.ConclusionAltogether, we identified a novel EMT 5-gene signature regulated by the KEAP1-NRF2 axis and this signature is strongly associated with metastasis and drug resistance in ESCA. These 5-genes are potential biomarkers and therapeutic targets for ESCA patients in whom the KEAP1-NRF2 pathway is altered.


Sign in / Sign up

Export Citation Format

Share Document