scholarly journals Genome Wide Identification of Respiratory Burst Oxidase Homolog (Rboh) Genes in Citrus sinensis and Functional Analysis of CsRbohD in Cold Tolerance

2022 ◽  
Vol 23 (2) ◽  
pp. 648
Author(s):  
Yueliang Zhang ◽  
Yiwu Zhang ◽  
Li Luo ◽  
Chunyi Lu ◽  
Weiwen Kong ◽  
...  

Respiratory burst oxidase homologs (Rbohs) are critical enzymes involved in the generation of reactive oxygen species (ROS) that play an important role in plant growth and development as well as various biotic and abiotic stresses in plants. Thus far, there have been few reports on the characterization of the Rboh gene family in Citrus. In this study, seven Rboh genes (CsRbohA~CsRbohG) were identified in the Citrus sinensis genome. The CsRboh proteins were predicted to localize to the cell membrane. Most CsRbohs contained four conserved domains, an EF-hand domain, and a transmembrane region. Phylogenetic analysis demonstrated that the CsRbohs were divided into five groups, suggesting potential distinct functions and evolution. The expression profiles revealed that these seven CsRboh genes displayed tissue-specific expression patterns, and five CsRboh genes were responsive to cold stress. Fourteen putative cis-acting elements related to stress response, hormone response, and development regulation were present within the promoters of CsRboh genes. The in-silico microRNA target transcript analyses indicated that CsRbohE might be targeted by csi-miR164. Further functional and physiological analyses showed that the knockdown of CsRbohD in trifoliate orange impaired resistance to cold stress. As a whole, our results provide valuable information for further functional studies of the CsRboh genes in response to cold stress.

2018 ◽  
Vol 19 (10) ◽  
pp. 3246 ◽  
Author(s):  
Jianbo Li ◽  
Jin Zhang ◽  
Huixia Jia ◽  
Zhiqiang Yue ◽  
Mengzhu Lu ◽  
...  

Small heat shock proteins (sHsps) function mainly as molecular chaperones that play vital roles in response to diverse stresses, especially high temperature. However, little is known about the molecular characteristics and evolutionary history of the sHsp family in Salix suchowensis, an important bioenergy woody plant. In this study, 35 non-redundant sHsp genes were identified in S. suchowensis, and they were divided into four subfamilies (C, CP, PX, and MT) based on their phylogenetic relationships and predicted subcellular localization. Though the gene structure and conserved motif were relatively conserved, the sequences of the Hsp20 domain were diversified. Eight paralogous pairs were identified in the Ssu-sHsp family, in which five pairs were generated by tandem duplication events. Ka/Ks analysis indicated that Ssu-sHsps had undergone purifying selection. The expression profiles analysis showed Ssu-Hsps tissue-specific expression patterns, and they were induced by at least one abiotic stress. The expression correlation between two paralogous pairs (Ssu-sHsp22.2-CV/23.0-CV and 23.8-MT/25.6-MT) were less than 0.6, indicating that they were divergent during the evolution. Various cis-acting elements related to stress responses, hormone or development, were detected in the promoter of Ssu-sHsps. Furthermore, the co-expression network revealed the potential mechanism of Ssu-sHsps under stress tolerance and development. These results provide a foundation for further functional research on the Ssu-sHsp gene family in S. suchowensis.


2008 ◽  
Vol 35 (5) ◽  
pp. 347 ◽  
Author(s):  
Damien J. Lightfoot ◽  
Annette Boettcher ◽  
Alan Little ◽  
Neil Shirley ◽  
Amanda J. Able

Respiratory burst oxidase homologues (RBOHs) of the human phagocyte gp91phox gene have been isolated from several plant species and the proteins that they encode have been shown to play important roles in the cellular response to biotic stress via the production of superoxide. In this study we have identified and preliminarily characterised six RBOHs from barley (Hordeum vulgare L.). Conservation of the genomic structure and conceptual protein sequence was observed between all six barley RBOH genes when compared with Arabidopsis and rice RBOH gene family members. Four of the six barley RBOH transcripts had wide-spread constitutive spatial expression patterns. The inducible expression profiles of HvRBOHF1 and HvRBOHF2 in response to infection by the necrotrophic fungal pathogens Pyrenophora teres f. teres Drechsler and Rhynchosporium secalis (Oudem) J. Davis were further characterised by quantitative real-time PCR (qPCR). Increased expression of both transcripts was observed in leaf epidermal tissue in response to infection, which is in keeping with a suggested role for both transcripts in the early oxidative burst during the plant response to pathogen invasion. This research provides a basis for further analysis and establishment of the roles of this RBOH family in various reactive oxygen species dependent processes in barley.


2021 ◽  
Vol 49 (1) ◽  
pp. 12191
Author(s):  
Wei ZHENG ◽  
Ziwei ZHANG ◽  
Xuefei YU ◽  
Tongtong XIE ◽  
Ning CHEN ◽  
...  

The WD40 transcription factor (TF) family is widespread in plants and plays important roles in plant growth and development, transcriptional regulation, and tolerance to abiotic stresses. WD40 TFs have been identified and characterized in a diverse series of plant species. However, little information is available on WD40 genes from D. longan. In this study, a total of 45 DlWD40 genes were identified from D. longan RNA-Seq data, and further analysed by bioinformatics tools. Also, the expression patterns of DlWD40 genes in roots and leaves, as well as responses to heat stress, were evaluated using quantitative real-time PCR (qRT-PCR). We found that the 45 DlWD40 proteins, together with 80 WD40 proteins from Arabidopsis and Zea mays, could be categorized into six groups. Of these, the DlWD40-4 protein was highly homologous to Arabidopsis WDR5a, a protein participating in tolerance to abiotic stresses. Moreover, a total of 25 cis-acting elements, such as abiotic stress and flavonoid biosynthesis elements, were found in the promoters of DlWD40 genes. The DlWD40-33 gene is targeted by miR3627, which has been proposed to be involved in flavonoid biosynthesis. Using qRT-PCR, ten of the 45 DlWD40 genes were demonstrated to have diverse expression patterns between roots and leaves, and these ten DlWD40 genes could also respond to varying durations of a 38 °C heat stress in roots and leaves. The results reported here will provide a basis for the further functional verification of DlWD40 genes in D. longan.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Shaofei Rao ◽  
Xinyang Wu ◽  
Hongying Zheng ◽  
Yuwen Lu ◽  
Jiejun Peng ◽  
...  

Abstract Background The Catharanthus roseus RLK1-like kinase (CrRLK1L) is a subfamily of the RLK gene family, and members are sensors of cell wall integrity and regulators of cell polarity growth. Recent studies have also shown that members of this subfamily are involved in plant immunity. Nicotiana benthamiana is a model plant widely used in the study of plant-pathogen interactions. However, the members of the NbCrRLK1L subfamily and their response to pathogens have not been reported. Results In this study, a total of 31 CrRLK1L members were identified in the N. benthamiana genome, and these can be divided into 6 phylogenetic groups (I-VI). The members in each group have similar exon-intron structures and conserved motifs. NbCrRLK1Ls were predicted to be regulated by cis-acting elements such as STRE, TCA, ABRE, etc., and to be the target of transcription factors such as Dof and MYB. The expression profiles of the 16 selected NbCrRLK1Ls were determined by quantitative PCR. Most NbCrRLK1Ls were highly expressed in leaves but there were different and diverse expression patterns in other tissues. Inoculation with the bacterium Pseudomonas syringae or with Turnip mosaic virus significantly altered the transcript levels of the tested genes, suggesting that NbCrRLK1Ls may be involved in the response to pathogens. Conclusions This study systematically identified the CrRLK1L members in N. benthamiana, and analyzed their tissue-specific expression and gene expression profiles in response to different pathogens and two pathogens associated molecular patterns (PAMPs). This research lays the foundation for exploring the function of NbCrRLK1Ls in plant-microbe interactions.


2021 ◽  
Vol 22 (2) ◽  
pp. 568
Author(s):  
Shiheng Lyu ◽  
Guixin Chen ◽  
Dongming Pan ◽  
Jianjun Chen ◽  
Wenqin She

14-3-3 proteins (14-3-3s) are among the most important phosphorylated molecules playing crucial roles in regulating plant development and defense responses to environmental constraints. No report thus far has documented the gene family of 14-3-3s in Citrus sinensis and their roles in response to stresses. In this study, nine 14-3-3 genes, designated as CitGF14s (CitGF14a through CitGF14i) were identified from the latest C. sinensis genome. Phylogenetic analysis classified them into ε-like and non-ε groups, which were supported by gene structure analysis. The nine CitGF14s were located on five chromosomes, and none had duplication. Publicly available RNA-Seq raw data and microarray databases were mined for 14-3-3 expression profiles in different organs of citrus and in response to biotic and abiotic stresses. RT-qPCR was used for further examining spatial expression patterns of CitGF14s in citrus and their temporal expressions in one-year-old C. sinensis “Xuegan” plants after being exposed to different biotic and abiotic stresses. The nine CitGF14s were expressed in eight different organs with some isoforms displayed tissue-specific expression patterns. Six of the CitGF14s positively responded to citrus canker infection (Xanthomonas axonopodis pv. citri). The CitGF14s showed expressional divergence after phytohormone application and abiotic stress treatments, suggesting that 14-3-3 proteins are ubiquitous regulators in C. sinensis. Using the yeast two-hybrid assay, CitGF14a, b, c, d, g, and h were found to interact with CitGF14i proteins to form a heterodimer, while CitGF14i interacted with itself to form a homodimer. Further analysis of CitGF14s co-expression and potential interactors established a 14-3-3s protein interaction network. The established network identified 14-3-3 genes and several candidate clients which may play an important role in developmental regulation and stress responses in this important fruit crop. This is the first study of 14-3-3s in citrus, and the established network may help further investigation of the roles of 14-3-3s in response to abiotic and biotic constraints.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e8190 ◽  
Author(s):  
Jie Guo ◽  
Yongkang Ren ◽  
Zhaohui Tang ◽  
Weiping Shi ◽  
Meixue Zhou

Cold stress is one of the major abiotic stresses that limit crop production. The ICE-CBF-COR pathway is associated with cold stress response in a wide variety of crop species. However, the ICE-CBF-COR genes has not been well characterized in wheat (Triticum aestivum). This study identified, characterized and examined the expression profiles of the ICE, CBF and COR genes for cold defense in wheat. Five ICE (inducer of CBF expression) genes, 37 CBF (C-repeat binding factor) genes and 11 COR (cold-responsive or cold-regulated) genes were discovered in the wheat genome database. Phylogenetic trees based on all 53 genes revealed that CBF genes were more diverse than ICE and COR genes. Twenty-two of the 53 genes appeared to include 11 duplicated pairs. Twenty rice (Oryza sativa) genes and 21 sorghum (Sorghum bicolor) and maize (Zea mays) genes showed collinearity with the wheat ICE, CBF and COR genes. Transcriptome data and qRT-PCR analyses revealed tissue-specific expression patterns of the ICE, CBF and COR genes, and identified similarities in the expression pattern of genes from the same family when subjected to drought, heat, drought plus heat, and cold stress. These results provide information for better understanding the biological roles of ICE, CBF, COR genes in wheat.


Genes ◽  
2018 ◽  
Vol 9 (10) ◽  
pp. 494 ◽  
Author(s):  
Xiaokang Zhuo ◽  
Tangchun Zheng ◽  
Zhiyong Zhang ◽  
Yichi Zhang ◽  
Liangbao Jiang ◽  
...  

NAC transcription factors (TFs) participate in multiple biological processes, including biotic and abiotic stress responses, signal transduction and development. Cold stress can adversely impact plant growth and development, thereby limiting agricultural productivity. Prunus mume, an excellent horticultural crop, is widely cultivated in Asian countries. Its flower can tolerate freezing-stress in the early spring. To investigate the putative NAC genes responsible for cold-stress, we identified and analyzed 113 high-confidence PmNAC genes and characterized them by bioinformatics tools and expression profiles. These PmNACs were clustered into 14 sub-families and distributed on eight chromosomes and scaffolds, with the highest number located on chromosome 3. Duplicated events resulted in a large gene family; 15 and 8 pairs of PmNACs were the result of tandem and segmental duplicates, respectively. Moreover, three membrane-bound proteins (PmNAC59/66/73) and three miRNA-targeted genes (PmNAC40/41/83) were identified. Most PmNAC genes presented tissue-specific and time-specific expression patterns. Sixteen PmNACs (PmNAC11/19/20/23/41/48/58/74/75/76/78/79/85/86/103/111) exhibited down-regulation during flower bud opening and are, therefore, putative candidates for dormancy and cold-tolerance. Seventeen genes (PmNAC11/12/17/21/29/42/30/48/59/66/73/75/85/86/93/99/111) were highly expressed in stem during winter and are putative candidates for freezing resistance. The cold-stress response pattern of 15 putative PmNACs was observed under 4 °C at different treatment times. The expression of 10 genes (PmNAC11/20/23/40/42/48/57/60/66/86) was upregulated, while 5 genes (PmNAC59/61/82/85/107) were significantly inhibited. The putative candidates, thus identified, have the potential for breeding the cold-tolerant horticultural plants. This study increases our understanding of functions of the NAC gene family in cold tolerance, thereby potentially intensifying the molecular breeding programs of woody plants.


2019 ◽  
Vol 144 (2) ◽  
pp. 79-91 ◽  
Author(s):  
Zhigang Ouyang ◽  
Huihui Duan ◽  
Lanfang Mi ◽  
Wei Hu ◽  
Jianmei Chen ◽  
...  

In eukaryotic systems, messenger RNA regulations, including splicing, 3′-end formation, editing, localization, and translation, are achieved by different RNA-binding proteins and noncoding RNAs. The YTH domain is a newly identified RNA-binding domain that was identified by comparing its sequence with that of splicing factor YT521-B. Previous study showed that the YTH gene plays an important role in plant resistance to abiotic and biotic stress. In this study, 211 YTH genes were identified in 26 species that represent four major plant lineages. Phylogenetic analysis revealed that these genes could be divided into eight subgroups. All of the YTH genes contain a YT521 domain and have different structures. Ten YTH genes were identified in navel orange (Citrus sinensis). The expression profiles of these CitYTH genes were analyzed in different tissues and at different fruit developmental stages, and CitYTH genes displayed distinct expression patterns under heat, cold, salt, and drought stress. Furthermore, expression of the CitYTH genes in response to exogenous hormones was measured. Nuclear localization was also confirmed for five of the proteins encoded by these genes after transient expression in Nicotiana benthamiana cells. This study provides valuable information on the role of CitYTHs in the signaling pathways involved in environmental stress responses in Citrus.


2015 ◽  
Vol 2015 ◽  
pp. 1-17 ◽  
Author(s):  
Huiping Zhu ◽  
Yangdong Wang ◽  
Hengfu Yin ◽  
Ming Gao ◽  
Qiyan Zhang ◽  
...  

Leucine-rich repeat receptor-like kinases (LRR-RLKs) make up the largest group of RLKs in plants and play important roles in many key biological processes such as pathogen response and signal transduction. To date, most studies on LRR-RLKs have been conducted on model plants. Here, we identified 236 and 230LRR-RLKsin two industrial oil-producing trees:Vernicia fordiiandVernicia montana, respectively. Sequence alignment analyses showed that the homology of the RLK domain (23.81%) was greater than that of the LRR domain (9.51%) among theVf/VmLRR-RLKs. The conserved motif of the LRR domain inVf/VmLRR-RLKsmatched well the known plant LRR consensus sequence but differed at the third last amino acid (W or L). Phylogenetic analysis revealed thatVf/VmLRR-RLKswere grouped into 16 subclades. We characterized the expression profiles ofVf/VmLRR-RLKsin various tissue types including root, leaf, petal, and kernel. Further investigation revealed thatVf/VmLRR-RLKorthologous genes mainly showed similar expression patterns in response to tree wilt disease, except 4 pairs ofVf/VmLRR-RLKsthat showed opposite expression trends. These results represent an extensive evaluation ofLRR-RLKsin two industrial oil trees and will be useful for further functional studies on these proteins.


Genome ◽  
2018 ◽  
Vol 61 (2) ◽  
pp. 121-130 ◽  
Author(s):  
Chenghao Zhang ◽  
Wenqi Dong ◽  
Zong-an Huang ◽  
MyeongCheoul Cho ◽  
Qingcang Yu ◽  
...  

Auxin plays key roles in regulating plant growth and development as well as in response to environmental stresses. The intercellular transport of auxin is mediated by the following four gene families: ATP-binding cassette family B (ABCB), auxin resistant1/like aux1 (AUX/LAX), PIN-formed (PIN), and PIN-like (PILS). Here, the latest assembled pepper (Capsicum annuum L.) genome was used to characterise and analyse the CaLAX and CaPIN gene families. Genome-wide investigations into these families, including chromosomal distributions, phytogenic relationships, and intron/exon structures, were performed. In total, 4 CaLAX and 10 CaPIN genes were mapped to 10 chromosomes. Most of these genes exhibited varied tissue-specific expression patterns assessed by quantitative real-time PCR. The expression profiles of the CaLAX and CaPIN genes under various abiotic stresses (salt, drought, and cold), exogenous phytohormones (IAA, 6-BA, ABA, SA, and MeJA), and polar auxin transport inhibitor treatments were evaluated. Most CaLAX and CaPIN genes were altered by abiotic stress at the transcriptional level in both shoots and roots, and many CaLAX and CaPIN genes were regulated by exogenous phytohormones. Our study helps to identify candidate auxin transporter genes and to further analyse their biological functions in pepper development and in its adaptation to environmental stresses.


Sign in / Sign up

Export Citation Format

Share Document