scholarly journals Design of Generalized Search Interfaces for Health Informatics

Information ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 317
Author(s):  
Jonathan Demelo ◽  
Kamran Sedig

In this paper, we investigate ontology-supported interfaces for health informatics search tasks involving large document sets. We begin by providing background on health informatics, machine learning, and ontologies. We review leading research on health informatics search tasks to help formulate high-level design criteria. We use these criteria to examine traditional design strategies for search interfaces. To demonstrate the utility of the criteria, we apply them to the design of ONTology-supported Search Interface (ONTSI), a demonstrative, prototype system. ONTSI allows users to plug-and-play document sets and expert-defined domain ontologies through a generalized search interface. ONTSI’s goal is to help align users’ common vocabulary with the domain-specific vocabulary of the plug-and-play document set. We describe the functioning and utility of ONTSI in health informatics search tasks through a workflow and a scenario. We conclude with a summary of ongoing evaluations, limitations, and future research.

Author(s):  
Mimi Miyoung Lee ◽  
Meng-Fen Grace Lin ◽  
Curtis J. Bonk

An all-volunteer organization called the Opensource Opencourseware Prototype System (OOPS), headquartered in Taiwan, was initially designed to translate open source materials from MIT OpenCourseWare (OCW) site into Chinese. Given the recent plethora of open educational resources (OER), such as the OCW, the growing use of such resources by the world community, and the emergence of online global education communities to localize resources such as the OOPS, a key goal of this research was to understand how the OOPS members negotiate meanings and form a collective identity in this cross-continent online community. To help with our explorations and analyses within the OOPS translation community, several core principles from Etienne Wenger’s concept of Communities of Practice (COP) guided our analyses, including mutual engagement, joint enterprise, shared repertoire, reification, and overall identity of the community. In this paper, we detail how each of these key components was uniquely manifested within the OOPS. Three issues appeared central to the emergence, success, and challenges of the community such as OOPS: 1) strong, stable, and fairly democratic leadership; 2) participation incentives; and 3) online storytelling or opportunities to share one’s translation successes, struggles, and advice within an asynchronous discussion forum. While an extremely high level of enthusiasm among the OOPS members underpinned the success of the OOPS, discussion continues on issues related to quality control, purpose and scope, and forms of legitimate participation. This study, therefore, provides an initial window into the emergence and functioning of an online global education COP in the OER movement. Future research directions related to online global educational communities are discussed.


2016 ◽  
Vol 54 (1) ◽  
pp. 19-31 ◽  
Author(s):  
Anthony M. Rodriguez

Abstract Students with intellectual and developmental disabilities (IDD) are routinely excluded from algebra and other high-level mathematics courses. High school students with IDD take courses in arithmetic and life skills rather than having an opportunity to learn algebra. Yet algebra skills can support the learning of money and budgeting skills. This study explores the feasibility of algebra instruction for adults with IDD through an experimental curriculum. Ten individuals with IDD participated in a 6-week course framing mathematics concepts within the context of everyday challenges in handling money. The article explores classroom techniques, discusses student strategies, and proposes possible avenues for future research analyzing mathematics instructional design strategies for individuals with IDD.


2021 ◽  
Author(s):  
Darya Zabelina ◽  
Elina Zaonegina ◽  
William Revelle ◽  
David M Condon

We investigated the relationships between creative achievement, cognitive ability, temperament, and vocational interests using a large and diverse internet-based sample. Ten creative domains (visual arts, music, creative writing, dance, drama, architecture, humor, scientific discovery, inventions, culinary arts) were positively associated with higher cognitive ability, intellect and extraversion, and lower agreeableness. With regard to cognitive ability, there was no evidence for the threshold effect on achievements. With regard to age, younger individuals endorsed a greater number of low-level achievements and older individuals more high-level achievements across the 10 creative domains. Other characteristics of individual differences (e.g., vocational interests) were more domain-specific for predicting creative achievement. We also introduce a revised method for the assessment and scoring of creative achievements, and discuss suggestions for future research.


Methodology ◽  
2017 ◽  
Vol 13 (1) ◽  
pp. 9-22 ◽  
Author(s):  
Pablo Livacic-Rojas ◽  
Guillermo Vallejo ◽  
Paula Fernández ◽  
Ellián Tuero-Herrero

Abstract. Low precision of the inferences of data analyzed with univariate or multivariate models of the Analysis of Variance (ANOVA) in repeated-measures design is associated to the absence of normality distribution of data, nonspherical covariance structures and free variation of the variance and covariance, the lack of knowledge of the error structure underlying the data, and the wrong choice of covariance structure from different selectors. In this study, levels of statistical power presented the Modified Brown Forsythe (MBF) and two procedures with the Mixed-Model Approaches (the Akaike’s Criterion, the Correctly Identified Model [CIM]) are compared. The data were analyzed using Monte Carlo simulation method with the statistical package SAS 9.2, a split-plot design, and considering six manipulated variables. The results show that the procedures exhibit high statistical power levels for within and interactional effects, and moderate and low levels for the between-groups effects under the different conditions analyzed. For the latter, only the Modified Brown Forsythe shows high level of power mainly for groups with 30 cases and Unstructured (UN) and Autoregressive Heterogeneity (ARH) matrices. For this reason, we recommend using this procedure since it exhibits higher levels of power for all effects and does not require a matrix type that underlies the structure of the data. Future research needs to be done in order to compare the power with corrected selectors using single-level and multilevel designs for fixed and random effects.


2020 ◽  
Author(s):  
Sina Faizollahzadeh Ardabili ◽  
Amir Mosavi ◽  
Pedram Ghamisi ◽  
Filip Ferdinand ◽  
Annamaria R. Varkonyi-Koczy ◽  
...  

Several outbreak prediction models for COVID-19 are being used by officials around the world to make informed-decisions and enforce relevant control measures. Among the standard models for COVID-19 global pandemic prediction, simple epidemiological and statistical models have received more attention by authorities, and they are popular in the media. Due to a high level of uncertainty and lack of essential data, standard models have shown low accuracy for long-term prediction. Although the literature includes several attempts to address this issue, the essential generalization and robustness abilities of existing models needs to be improved. This paper presents a comparative analysis of machine learning and soft computing models to predict the COVID-19 outbreak as an alternative to SIR and SEIR models. Among a wide range of machine learning models investigated, two models showed promising results (i.e., multi-layered perceptron, MLP, and adaptive network-based fuzzy inference system, ANFIS). Based on the results reported here, and due to the highly complex nature of the COVID-19 outbreak and variation in its behavior from nation-to-nation, this study suggests machine learning as an effective tool to model the outbreak. This paper provides an initial benchmarking to demonstrate the potential of machine learning for future research. Paper further suggests that real novelty in outbreak prediction can be realized through integrating machine learning and SEIR models.


2020 ◽  
Vol 12 (11) ◽  
pp. 4460 ◽  
Author(s):  
Mohammadsoroush Tafazzoli ◽  
Ehsan Mousavi ◽  
Sharareh Kermanshachi

Although the two concepts of lean and sustainable construction have been developed due to different incentives, and they do not pursue the same exact goals, there exists considerable commonality between them. This paper discusses the potentials for integrating the two approaches and their practices and how the resulting synergy from combining the two methods can potentially lead to higher levels of fulfilling the individual goals of each of them. Some limitations and challenges to implementing the integrated approach are also discussed. Based on a comprehensive review of existing papers related to sustainable and lean construction topics, the commonality between the two approaches is discussed and grouped in five categories of (1) cost savings, (2) waste minimization, (3) Jobsite safety improvement, (4) reduced energy consumption, and (5) customers’ satisfaction improvement. The challenges of this integration are similarly identified and discussed in the four main categories of (1) additional initial costs to the project, (2) difficulty of providing specialized expertise, (3) contractors’ unwillingness to adopt the additional requirements, and (4) challenges to establish a high level of teamwork. Industry professionals were then interviewed to rank the elements in each of the two categories of opportunities and challenges. The results of the study highlight how future research can pursue the development of a new Green-Lean approach by investing in the communalities and meeting the challenges of this integration.


2020 ◽  
Vol 13 (1) ◽  
pp. 56
Author(s):  
Tino Herden

Purpose: Analytics research is increasingly divided by the domains Analytics is applied to. Literature offers little understanding whether aspects such as success factors, barriers and management of Analytics must be investigated domain-specific, while the execution of Analytics initiatives is similar across domains and similar issues occur. This article investigates characteristics of the execution of Analytics initiatives that are distinct in domains and can guide future research collaboration and focus. The research was conducted on the example of Logistics and Supply Chain Management and the respective domain-specific Analytics subfield of Supply Chain Analytics. The field of Logistics and Supply Chain Management has been recognized as early adopter of Analytics but has retracted to a midfield position comparing different domains.Design/methodology/approach: This research uses Grounded Theory based on 12 semi-structured Interviews creating a map of domain characteristics based of the paradigm scheme of Strauss and Corbin.Findings: A total of 34 characteristics of Analytics initiatives that distinguish domains in the execution of initiatives were identified, which are mapped and explained. As a blueprint for further research, the domain-specifics of Logistics and Supply Chain Management are presented and discussed.Originality/value: The results of this research stimulates cross domain research on Analytics issues and prompt research on the identified characteristics with broader understanding of the impact on Analytics initiatives. The also describe the status-quo of Analytics. Further, results help managers control the environment of initiatives and design more successful initiatives.


Author(s):  
Mateusz Iwo Dubaniowski ◽  
Hans Rudolf Heinimann

A system-of-systems (SoS) approach is often used for simulating disruptions to business and infrastructure system networks allowing for integration of several models into one simulation. However, the integration is frequently challenging as each system is designed individually with different characteristics, such as time granularity. Understanding the impact of time granularity on propagation of disruptions between businesses and infrastructure systems and finding the appropriate granularity for the SoS simulation remain as major challenges. To tackle these, we explore how time granularity, recovery time, and disruption size affect the propagation of disruptions between constituent systems of an SoS simulation. To address this issue, we developed a high level architecture (HLA) simulation of three networks and performed a series of simulation experiments. Our results revealed that time granularity and especially recovery time have huge impact on propagation of disruptions. Consequently, we developed a model for selecting an appropriate time granularity for an SoS simulation based on expected recovery time. Our simulation experiments show that time granularity should be less than 1.13 of expected recovery time. We identified some areas for future research centered around extending the experimental factors space.


Author(s):  
Lichao Xu ◽  
Szu-Yun Lin ◽  
Andrew W. Hlynka ◽  
Hao Lu ◽  
Vineet R. Kamat ◽  
...  

AbstractThere has been a strong need for simulation environments that are capable of modeling deep interdependencies between complex systems encountered during natural hazards, such as the interactions and coupled effects between civil infrastructure systems response, human behavior, and social policies, for improved community resilience. Coupling such complex components with an integrated simulation requires continuous data exchange between different simulators simulating separate models during the entire simulation process. This can be implemented by means of distributed simulation platforms or data passing tools. In order to provide a systematic reference for simulation tool choice and facilitating the development of compatible distributed simulators for deep interdependent study in the context of natural hazards, this article focuses on generic tools suitable for integration of simulators from different fields but not the platforms that are mainly used in some specific fields. With this aim, the article provides a comprehensive review of the most commonly used generic distributed simulation platforms (Distributed Interactive Simulation (DIS), High Level Architecture (HLA), Test and Training Enabling Architecture (TENA), and Distributed Data Services (DDS)) and data passing tools (Robot Operation System (ROS) and Lightweight Communication and Marshalling (LCM)) and compares their advantages and disadvantages. Three specific limitations in existing platforms are identified from the perspective of natural hazard simulation. For mitigating the identified limitations, two platform design recommendations are provided, namely message exchange wrappers and hybrid communication, to help improve data passing capabilities in existing solutions and provide some guidance for the design of a new domain-specific distributed simulation framework.


Sign in / Sign up

Export Citation Format

Share Document