scholarly journals Chemical and Physical Analysis of a Petroleum Hydrocarbon Contamination on a Soil Sample to Determine Its Natural Degradation Feasibility

Inventions ◽  
2020 ◽  
Vol 5 (3) ◽  
pp. 43
Author(s):  
Karuna Arjoon ◽  
James G. Speight

Crude oil is the world’s leading fuel source and is the lifeblood of the industrialized nations as it is vital to produce many everyday essentials. This dependency on fossil fuels has resulted in serious environmental issues in recent times. Petroleum contaminated soils must be treated to ensure that human health and the environment remain protected. The restoration of petroleum-polluted soil is a complex project because once petroleum hydrocarbon enters the environment, the individual constituents will partition to various environmental compartments in accordance with their own physical–chemical properties; therefore, the composition and inherent biodegradability of the petroleum hydrocarbon pollutant determines the suitability of a remediation approach. The objective of this study was to assess the prospective of bioremediation as a feasible technique for practical application to the treatment of petroleum hydrocarbon-contaminated soils, by trending the changes in the properties of the petroleum due to biodegradation. Each polluted soil has particularities, thus, the bioremediation approach for each contaminated site is unique. Therefore, hydrocarbon-contaminated sites that have remained polluted for decades due to lack of proper decontamination treatments present in this part of the world would benefit from cost effective treatments. Most bioremediation case studies are usually based on hypothetical assumptions rather than technical or experimental data; providing data that show the capabilities of biodegradation of indigenous microbes on specific oil composition can lead to the creation of strategies to accelerate the biological breakdown of hydrocarbons in soil.

2021 ◽  
Vol 2 (4) ◽  
pp. 53-58
Author(s):  
Hasnain Raza ◽  

As anthropogenic activities rise over the world, representing an environmental threat, soil contamination and treatment of polluted areas have become a worldwide concern. Bioremediation is a sustainable technique that could be a cost-effective mitigating solution for heavy metal-polluted soil regeneration. Due to the difficulties in determining the optimum bioremediation methodology for each type of pollutant and the lack of literature on soil bioremediation, we reviewed the main in-situ type, their current properties, applications, and techniques, plants, and microbe’s efficiency for treatment of contaminated soil. In this review, we describe the deeper knowledge of the in-situ types of bioremediation and their different pollutant accumulation mechanisms.


2009 ◽  
Vol 89 (1) ◽  
pp. 21-29 ◽  
Author(s):  
Ravanbakhsh Shirdam ◽  
Ali Daryabeigi Zand ◽  
Gholamreza Nabi Bidhendi ◽  
Nasser Mehrdadi

To date, many developing countries such as Iran have almost completely abandoned the idea of decontaminating oil-polluted soils due to the high costs of conventional (physical/chemical) soil remediation methods. Phytoremediation is an emerging green technology that can become a promising solution to the problem of decontaminating hydrocarbon-polluted soils. Screening the capacity of native tolerant plant species to grow on aged, petroleum hydrocarbon-contaminated soils is a key factor for successful phytoremediation. This study investigated the effect of hydrocarbon pollution with an initial concentration of 40 000 ppm on growth characteristics of sorghum (Sorghum bicolor) and common flax (Linum usitatissumum). At the end of the experiment, soil samples in which plant species had grown well were analyzed for total petroleum hydrocarbons (TPHs) removal by GC-FID. Common flax was used for the first time in the history of phytoremediation of oil-contaminated soil. Both species showed promising remediation efficiency in highly contaminated soil; however, petroleum hydrocarbon contamination reduced the growth of the surveyed plants significantly. Sorghum and common flax reduced TPHs concentration by 9500 and 18500 mg kg‑1, respectively, compared with the control treatment.


2011 ◽  
Vol 2011 ◽  
pp. 1-13 ◽  
Author(s):  
Nilanjana Das ◽  
Preethy Chandran

One of the major environmental problems today is hydrocarbon contamination resulting from the activities related to the petrochemical industry. Accidental releases of petroleum products are of particular concern in the environment. Hydrocarbon components have been known to belong to the family of carcinogens and neurotoxic organic pollutants. Currently accepted disposal methods of incineration or burial insecure landfills can become prohibitively expensive when amounts of contaminants are large. Mechanical and chemical methods generally used to remove hydrocarbons from contaminated sites have limited effectiveness and can be expensive. Bioremediation is the promising technology for the treatment of these contaminated sites since it is cost-effective and will lead to complete mineralization. Bioremediation functions basically on biodegradation, which may refer to complete mineralization of organic contaminants into carbon dioxide, water, inorganic compounds, and cell protein or transformation of complex organic contaminants to other simpler organic compounds by biological agents like microorganisms. Many indigenous microorganisms in water and soil are capable of degrading hydrocarbon contaminants. This paper presents an updated overview of petroleum hydrocarbon degradation by microorganisms under different ecosystems.


2001 ◽  
Vol 28 (S1) ◽  
pp. 141-154 ◽  
Author(s):  
Reidar Zapf-Gilje ◽  
Guy C Patrick ◽  
Robert McLenehan

Industrial production and use of creosote dates back to the middle of the 1800s, with the largest production occurring in the first part of the 20th century. In British Columbia, the historical use of creosote for wood treatment and other industrial applications has been large. The characteristics of creosote have led to widespread contamination from spills and leaks at sites where creosote was used. Three such sites are located along the Fraser River within the Fraser River delta. Two of these sites have been subject to provincial remediation orders, as the potential risk to aquatic life in the Fraser River was considered to be high. Several phases of investigation and remediation have taken place over the past three years, with varying rates of progress, influenced by the complexity of the individual groups of responsible persons and by site conditions. The remediation is, to a large extent, completed at two of the sites, and is well underway at the third site. The remediation involved a combination of reduction of contaminant mass through removal of the near surface contaminated soils, in-place management of polycyclic aromatic hydrocarbon contamination at depth and in the river sediments, and hydraulic control of dissolved and free-phase contamination through pumping from on-site wells. The completed remediation works will allow for continued industrial and (or) commercial use of the site, and provide long-term protection of the Fraser River and its aquatic habitat. The measures implemented are expected to satisfy the provincial Waste Management Act and the Contaminated Sites Regulation for protection of human health and the environment, as well as the federal provisions under the Canadian Fisheries Act for controlling release of deleterious substances and for providing adequate foreshore fish habitat.Key words: coaltar, containment, contaminated site, creosote, hydraulic control, interception, regulatory process, risk-based remediation, river sediments.


Agronomy ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 1196 ◽  
Author(s):  
Małgorzata Pawlik ◽  
Tomasz Płociniczak ◽  
Sofie Thijs ◽  
Isabel Pintelon ◽  
Jaco Vangronsveld ◽  
...  

Endophyte-enhanced phytodegradation is a promising technology to clean up polluted soils. To improve the success rate of this nature-based remediation approach, it is important to advance the inoculation method as this has been shown to strongly affect the final outcome. However, studies evaluating inoculation strategies and their effect on hydrocarbon degradation are limited. This study aims to investigate two different manners of endophyte inoculation in Lolium perenne growing in an aged petroleum hydrocarbon polluted soil: (1) direct soil inoculation (SI), and (2) pre-inoculation of the caryopses followed by soil inoculation (PI). Different endophytic bacterial strains, Rhodococcus erythropolis 5WK and Rhizobium sp. 10WK, were applied individually as well as in combination. Depending on the method of inoculation, the petroleum hydrocarbon (PHC) degradation potential was significantly different. The highest PHC removal was achieved after pre-inoculation of ryegrass caryopses with a consortium of both bacterial strains. Moreover, both strains established in the aged-polluted soil and could also colonize the roots and shoots of L. perenne. Importantly, used endophytes showed the selective colonization of the environment compartments. Our findings show that the method of inoculation determines the efficiency of the phytodegradation process, especially the rate of PHC degradation. This study provides valuable information for choosing the most cost-effective and beneficial means to optimize phytodegradation.


2011 ◽  
Vol 414 ◽  
pp. 51-55
Author(s):  
An Ping Liu ◽  
Xiao Nan Sun ◽  
Fan Yang ◽  
Xiao Song Sun ◽  
Shu Chang Jin

Petroleum contamination in soil has become one of the important contamination issues. Aiming at large areas petroleum contamination in soil, this paper introduce risk assessment and contamination quantitative calculation method. Based on risk assessment model and related quantitative calculation method, select a specific petroleum contaminated site, conduct risk assessment for it and then calculated the volume of contaminated soils. As a research case, the study can provide guidance to the preliminary investigation and a basis for effective remediation.


Author(s):  
O. Ule ◽  
D. N. Ogbonna ◽  
R. N. Okparanma ◽  
R. R. Nrior

Aim: To assess the Mycoremediation potential of Mucor racemosus and Aspergillus niger in open field crude oil contaminated soils in Rivers State, Nigeria.  Study Design: The study employs experimental design, statistical analysis of the data and interpretation. Place and Duration of Study: Rivers State University demonstration farmland in Nkpolu-Oroworukwo, Mile 3 Diobu area of Port Harcourt, was used for this study. The piece of land is situated at Longitude 4°48’18.50” N and Latitude 6ᵒ58’39.12” E measuring 5.4864 m x 5.1816 m with a total area of 28.4283 square meter. Mycoremediation process monitoring lasted for 56 days, analyses were carried out weekly at 7 days’ interval. Methodology: Five (5) experimental plots were employed using a Randomized Block Design each having dimensions of 100 x 50 x 30 cm (Length x Breadth x Height) and were formed and mapped out on agricultural soil, each plot was contaminated with 22122.25g of Crude Oil except Control 1 and left fallow for 6 days after contamination for proper contamination and exposure to natural environmental factors to mimic crude oil spill site. On the seventh day bio-augmentation process commenced using two (2) fungal isolates namely Aspergillus niger [Asp] and Mucor rasemosus [Muc]). Two (2) control plots (P1: Uncontaminated and unamended soil - CTRL 1 US) and P2: Crude Oil contaminated but unamended soil - CTRL 2 CS); P3 = P5 were contaminated and amended/bioaugmented (P3: CS+Asp, P4: CS+Muc, P5: CS+Asp+Muc respectively. Soil profile before and after contamination was assayed while parameters like Temperature, pH, Nitrogen, Phosphorus, Potassium and Total Petroleum Hydrocarbon (TPH) contents were monitored throughout the experimental period. Microbial analyses such as Total Heterotrophic Bacteria (THB), Total Heterotrophic Fungi (THF), Hydrocarbon Utilizing Bacteria (HUB) and Hydrocarbon Utilizing Fungi (HUF) were recorded. Bioremediation efficiency was estimated from percentage (%) reduction of Total Petroleum Hydrocarbon (TPH) from day 1 to the residual hydrocarbon at day 56 of bio- augmentation/ biostimulation plots with the control. Results: Results revealed actual amount of remediated hydrocarbon and % Bioremediation Efficiency at 56 days in the different treatment plots (initial TPH contamination value of 8729.00mg/kg) in a decreasing order as follows: CS+Muc (8599.19mg/kg; 33.66%) > CS+Asp+Muc (8357.31mg/kg; 33.04%) > CS+Asp (8341.58mg/kg; 32.98%) > CTRL 2 -CS (Polluted soil without amendment) (81.06mg/kg; 0.32%). Microbiological results After fifty-six (56) days of bioremediation monitoring; %HUB were as follows; CS+Asp+Muc (45.30%) > CS+Asp (40.32%) > CS+Muc (35.01%) > CTRL 2 –CS (30.43%) > CTRL 1 – US (0%). These results indicate that the presence of the contaminated crude oil stimulated and sustained the growth of Hydrocarbon Utilizing Bacteria (HUB) in the contaminated plots (P2 - P3); more so, the higher growth in the enhanced bio-augmented plots (P3 – P5) shows the positive impact of fungal bio-augmentation in bioremediation of crude oil polluted soil. It was further observed that treatment plots with higher HUB or HUF had higher percentage (%) bioremediation efficiency; that is, the higher the sustained HUB and HUF population, the higher the %Bioremediation process. Hydrocarbon Utilizing Bacteria (Log10 CFU/g): CS+Asp (4.20) (Day 35) > CS+Muc+Asp (4.18) (Day 35) > CS+Muc (4.08) (Day 28) > CTRL 2 – CS (3.95) (Day 21) > CTRL 1 – US (3.78) (Day 35). (Fig. 3). Hydrocarbon Utilizing Fungi (Log10 CFU/g): CS+Asp (4.68) (Day 35) > CS+Muc+Asp (4.58) (Day 35) > CS+Muc (4.48) (Day 35) > CTRL 2 – CS (4.23) (Day 21) > CTRL 1 – US (2.85) (Day 42). Conclusion: Study showed that bioremediation of crude oil-contaminated soils with Bioaugmenting fungus singly may be more effective than combination with others depending on the type of substrate used, nature of the hydrocarbon utilizing organism and environmental conditions prevalent as seen in Mucor racemosus having higher bioremediation potential than when combined with Aspergillus niger. Notably, Hydrocarbon Utlilizing Bacteria (HUB) and Hydrocarbon Utilizing Fungi (HUF) which are the key players in Bioremediation has its peak count value on Day 35, this confers that nutrient renewal on bioremediation site should be at interval of 35 days for continuous effective bioremediation of hydrocarbon pollutants. It is therefore recommended that single microbes of high bioremediation potential could be used since its more effective than consortium of many hydrocarbon utilizing microbes. Also, nutrient or bio-augmenting microbes’ renewal on bioremediation site should be at an interval of 35 days for continuous effective bioremediation of hydrocarbon pollutants.


Molecules ◽  
2019 ◽  
Vol 24 (18) ◽  
pp. 3400 ◽  
Author(s):  
Adam Truskewycz ◽  
Taylor D. Gundry ◽  
Leadin S. Khudur ◽  
Adam Kolobaric ◽  
Mohamed Taha ◽  
...  

Petroleum hydrocarbons represent the most frequent environmental contaminant. The introduction of petroleum hydrocarbons into a pristine environment immediately changes the nature of that environment, resulting in reduced ecosystem functionality. Natural attenuation represents the single, most important biological process which removes petroleum hydrocarbons from the environment. It is a process where microorganisms present at the site degrade the organic contaminants without the input of external bioremediation enhancers (i.e., electron donors, electron acceptors, other microorganisms or nutrients). So successful is this natural attenuation process that in environmental biotechnology, bioremediation has developed steadily over the past 50 years based on this natural biodegradation process. Bioremediation is recognized as the most environmentally friendly remediation approach for the removal of petroleum hydrocarbons from an environment as it does not require intensive chemical, mechanical, and costly interventions. However, it is under-utilized as a commercial remediation strategy due to incomplete hydrocarbon catabolism and lengthy remediation times when compared with rival technologies. This review aims to describe the fate of petroleum hydrocarbons in the environment and discuss their interactions with abiotic and biotic components of the environment under both aerobic and anaerobic conditions. Furthermore, the mechanisms for dealing with petroleum hydrocarbon contamination in the environment will be examined. When petroleum hydrocarbons contaminate land, they start to interact with its surrounding, including physical (dispersion), physiochemical (evaporation, dissolution, sorption), chemical (photo-oxidation, auto-oxidation), and biological (plant and microbial catabolism of hydrocarbons) interactions. As microorganism (including bacteria and fungi) play an important role in the degradation of petroleum hydrocarbons, investigations into the microbial communities within contaminated soils is essential for any bioremediation project. This review highlights the fate of petroleum hydrocarbons in tertial environments, as well as the contributions of different microbial consortia for optimum petroleum hydrocarbon bioremediation potential. The impact of high-throughput metagenomic sequencing in determining the underlying degradation mechanisms is also discussed. This knowledge will aid the development of more efficient, cost-effective commercial bioremediation technologies.


2021 ◽  
Vol 2 (3) ◽  
pp. 227-234
Author(s):  
Michael E. Nkereuwem ◽  
Afeez O. Amoo ◽  
Adeniyi O. Adeleye ◽  
Hafsat S. Abubakar ◽  
Victor O. Onokebhagbe ◽  
...  

Soil pollution caused by petroleum hydrocarbon and its derivatives has become a grave global issue. Physico-chemical techniques are often expensive. However, bioremediation of petroleum hydrocarbon polluted soil is cost-effective. Therefore, the study was carried out to assess the biostimulatory influence of biochar on the degradation of petroleum hydrocarbon impacted soil in NNPC Depot, kano state. Soil samples were randomly collected from the polluted site to obtain a composite sample. About 400 g of the polluted soil was filled into pots and arranged in a 2x2 factorial experiment in a completely randomized design with three replications. Bone and wood char was at 2 levels (0 and 50 g/pot) each. Data were collected on the physicochemical properties (pH, TN, and Av. P) of the soil, Total Petroleum Hydrocarbon (TPH), and bacterial population. Data were analyzed using ANOVA at α0. 05. Results obtained from the study show that biochar application significantly (p<0.05) enhanced TPH degradation and bacterial population in the polluted soil. However, Bone char significantly(p<0.05) enhanced TPH degradation and bacterial population the most compared to wood char. Combined bone and wood char application resulted in significantly (p<0.05) lower residual TPH content in the polluted soil compared to using bone or wood char alone. Thus, bone and wood char should be used in the bioremediation of petroleum hydrocarbon impacted soils.


Author(s):  
Nikolay S. Shulaev ◽  
◽  
Valeriya V. Pryanichnikova ◽  
Ramil R. Kadyrov ◽  
Inna V. Ovsyannikova ◽  
...  

The most essential scientifific and practical task in the area of ecological safety of pipelines operation is the development and improvement of methods of purifification and restoration of oil-contaminated soils. One of the most effificient and cost effective methods is electrochemical purifification, that does not require the use of expensive chemical reagents and soil excavation. However, the consideration of non-uniform contamination of various soil sections is required. The article examines the features of the organization and technological infrastructure for electrochemical purifification of non-uniformly contaminated soils when using a single electrical energy source, a method for calculating the design parameters of the corresponding installation is proposed. Effificient purifification of non-uniformly contaminated soil when using a specifified voltage is possible through the use of different-sized electrodes. For each soil type, the amount of transmitted electric charge required for soil purifification is determined by the concentration of the contaminant. Allocation of cathodes and anodes as parallel batteries and their connection using individual buses is an effective and energy-effificient solution, since an almost-uniform electric fifield is created in an inter-electrode space, thus allowing the reduction of the interelectrode resistance of the medium.


Sign in / Sign up

Export Citation Format

Share Document