scholarly journals Attenuation of Knee Osteoarthritis Progression in Mice through Polarization of M2 Macrophages by Intra-Articular Transplantation of Non-Cultured Human Adipose-Derived Regenerative Cells

2021 ◽  
Vol 10 (19) ◽  
pp. 4309
Author(s):  
Kohei Kamada ◽  
Takehiko Matsushita ◽  
Takahiro Yamashita ◽  
Tomoyuki Matsumoto ◽  
Hideki Iwaguro ◽  
...  

Adipose-derived regenerative cells (ADRCs) are non-cultured heterogeneous or mixed populations of cells obtained from adipose tissue by collagenase digestion. The injection of ADRCs have been tried clinically for the treatment of osteoarthritis (OA). The purpose of this study was to evaluate the effect of intra-articular transplantation of human ADRCs on OA progression in mice and the effect of ADRCs on macrophage polarization. In in vivo experiments, BALB/c-nu mice with knee OA received intra-articular transplantation of either phosphate buffered-saline or human ADRCs. OA progression was evaluated histologically and significantly attenuated in the ADRC group at both four and eight weeks postoperatively. The expression of OA-related proteins in the cartilage and macrophage-associated markers in the synovium were examined by immunohistochemistry. The numbers of MMP-13-, ADAMTS-5-, IL-1β-, IL-6- and iNOS-positive cells significantly decreased, and type II collagen- and CD206-positive cells were more frequently detected in the ADRC group compared with that in the control group. In vitro co-culture experiments showed that ADRCs induced macrophage polarization toward M2. The results of this study suggest that the intra-articular transplantation of human ADRCs could attenuate OA progression possibly by reducing catabolic factors in chondrocytes and modulating macrophage polarization.

2020 ◽  
pp. 155335062097800
Author(s):  
Ian A. Makey ◽  
Nitin A. Das ◽  
Samuel Jacob ◽  
Magdy M. El-Sayed Ahmed ◽  
Colleen M. Makey ◽  
...  

Background. Retained hemothorax (RH) is a common problem in cardiothoracic and trauma surgery. We aimed to determine the optimum agitation technique to enhance thrombus dissolution and drainage and to apply the technique to a porcine-retained hemothorax. Methods. Three agitation techniques were tested: flush irrigation, ultrasound, and vibration. We used the techniques in a benchtop model with tissue plasminogen activator (tPA) and pig hemothorax with tPA. We used the most promising technique vibration in a pig hemothorax without tPA. Statistics. We used 2-sample t tests for each comparison and Cohen d tests to calculate effect size (ES). Results. In the benchtop model, mean drainages in the agitation group and control group and the ES were flush irrigation, 42%, 28%, and 2.91 ( P = .10); ultrasound, 35%, 27%, and .76 ( P = .30); and vibration, 28%, 19%, and 1.14 ( P = .04). In the pig hemothorax with tPA, mean drainages and the ES of each agitation technique compared with control (58%) were flush irrigation, 80% and 1.14 ( P = .37); ultrasound, 80% and 2.11 ( P = .17); and vibration, 95% and 3.98 ( P = .06). In the pig hemothorax model without tPA, mean drainages of the vibration technique and control group were 50% and 43% (ES = .29; P = .65). Discussion. In vitro studies suggested flush irrigation had the greatest effect, whereas only vibration was significantly different vs the respective controls. In vivo with tPA, vibration showed promising but not statistically significant results. Results of in vivo experiments without tPA were negative. Conclusion. Agitation techniques, in combination with tPA, may enhance drainage of hemothorax.


2005 ◽  
Vol 09 (12) ◽  
pp. 835-840 ◽  
Author(s):  
Sun-Young Kwak ◽  
Dae-Seog Lim ◽  
Su-Mi Bae ◽  
Yong-Wook Kim ◽  
Joon-Mo Lee ◽  
...  

Photodynamic therapy (PDT) has been reported to be effective for treating various tumors and induce apoptosis in many tumor cells. In this study, we examined a biological significance of PDT with a chlorin-based photosensitizer, Radachlorin®, in a cervical cancer model, TC-1 cells. When TC-1 cells were exposed to varied doses of Radachlorin® with light irradiation (6.25 J/cm2), PDT induced a dose-dependent growth inhibition of TC-1 cells. All of these cells were significantly damaged after light irradiation and categorized to be early and late apoptosis, as determined by annexin V staining. Radachlorin® localized primarily into the Golgi apparatus of cells in 12 h of the treatment, and weak fluorescence intensity was also detected in mitochondria. On the other hand, in the in vivo experiments, following light irradiation (100 J/cm2), retarded tumor growth was significant in mice treated with Radachlorin®, as compared to the control group. Taken together, we propose that PDT after the application of Radachlorin® may induce the Golgi apparatus-mediated apoptosis of cervical cancer cells in vitro, and also be effective in the mice system.


2020 ◽  
pp. 18-26
Author(s):  
I. Sani ◽  
A.A. Umar ◽  
S.A. Jiga ◽  
F. Bello ◽  
A. Abdulhamid ◽  
...  

Several studies have been reported on active peptides isolated from some medicinal plants, which were effective inhibitors against snake venom induced toxicities. Hence, the aim of this research work was to isolate, purify and characterize an antisnake venom plant peptide from Bauhinia rufescens seed that can serve as potential alternative to serum-based antivenins. B. rufescens seed was collected, duly identified, authenticated and processed. The peptide was isolated from the seed and purified using gel filtration chromatography and SDS-PAGE and then named as BRS-P19. Venom Phospholipase A2 (VPLA2) was used for the study and was isolated from Naja nigricollis venom. Albino mice of both sexes were used for in vivo experiments. They were divided into seven (7) groups of three (3) mice each. Group 1 served as normal control, group 2 were injected with VPLA2 only, group 3 and 4 were injected with VPLA2 then treated with BRS-P19 at doses of 0.2 and 0.4 mg/kg b.w. respectively, while mice in group 5 were injected with VPLA2 then treated with standard antivenin, group 6 and 7 were injected with VPLA2 followed by administration of ascorbic acid and α-tocopherol respectively. In all the groups, hepatic and renal levels of reactive oxygen species (ROS), lipid peroxidation (MDA) and activities of antioxidant enzymes were determined. The results showed that, the BRS-P19 has molecular weight of ~19kD. Its percentage in vitro inhibitory effect against VPLA2 was 91.85 ± 0.32%. For the in vivo study, the animals treated with 0.4 mg/kg b.w. of the BRS-P19 showed a significant (P<0.05) decrease in the hepatic and renal ROS and MDA levels when compared with the VPLA2 untreated group. But, the activities of the antioxidant enzymes in all the treated groups were significantly (P<0.05) increased by the BRS-P19 at 0.4 mg/kg b.w. when compared to the VPLA2 untreated group. Based on these findings, it has been established that, BRS-P19 has antisnake venom effect through inhibition of VPLA2 and antioxidant activity as the possible mechanisms of action.


Molecules ◽  
2020 ◽  
Vol 25 (4) ◽  
pp. 903
Author(s):  
Miklós Nagy ◽  
Gábor Szemán-Nagy ◽  
Alexandra Kiss ◽  
Zsolt László Nagy ◽  
László Tálas ◽  
...  

Multiple drug resistant fungi pose a serious threat to human health, therefore the development of completely new antimycotics is of paramount importance. The in vitro antifungal activity of the original, 1-amino-5-isocyanonaphthalenes (ICANs) was evaluated against reference strains of clinically important Candida species. Structure-activity studies revealed that the naphthalene core and the isocyano- together with the amino moieties are all necessary to exert antifungal activity. 1,1-N-dimethylamino-5-isocyanonaphthalene (DIMICAN), the most promising candidate, was tested further in vitro against clinical isolates of Candida species, yielding a minimum inhibitory concentration (MIC) of 0.04–1.25 µg/mL. DIMICAN was found to be effective against intrinsically fluconazole resistant Candida krusei isolates, too. In vivo experiments were performed in a severly neutropenic murine model inoculated with a clinical strain of Candida albicans. Daily administration of 5 mg/kg DIMICAN intraperitoneally resulted in 80% survival even at day 13, whereas 100% of the control group died within six days. Based on these results, ICANs may become an effective clinical lead compound family against fungal pathogens.


Author(s):  
Bahman Rahimi Esboei ◽  
Masoud Keighobadi ◽  
Hajar Ziaei Hezarjaribi ◽  
Mahdi Fakhar ◽  
Ahmad Daryani ◽  
...  

Background: Toxoplasmosis is a disease that results from infection with an obligate intracellular T. gondii parasite, one of the world's most common parasites. Considering the complications of chemical drugs and the need for an appropriate drug combination for treatment of toxoplasmosis and also considering the antimicrobial potential of chitosan, as a natural source, this study was aimed to evaluate in vitro activity of commercial chitosan (CC) on T. gondii. Methods: In this experimental study, the tachyzoites of T. gondii was collected from the peritoneal exudates from infected Balb/c mice. The tachyzoites were diluted in phosphate buffer saline (PBS). Chitosan with low molecular weight was commercially purchased. Then, at concentrations of 10, 50, 100 and 200 µg/mL and after 30, 60, 120 and 180 minutes the viability of tachyzoites were determined by using trypan blue 0.1%. Anti-T.gondii activity of CC in all concentration was significantly higher than pyrimethamine as control group (P=0.05). Results: The concentration of 200 µg/mL of CC had the highest effects and killed 30.5, 52, 59 and 81.5% of tachyzoites after 30, 60, 120 and 180 minutes. Moreover, IC50 values of CC were 515, 171, 12.5 and <10 μg/mL in comparison with pyrimethamine as 58.82 μg/mL for 30, 60, 120, and 180 min of exposure time. Conclusion: Our results indicate chitosan in low molecular weight had potent activity against T. gondii tachyzoites and could be an appropriate candidate for treatment of at least acute toxoplasmosis, certainly, after complementary in vivo experiments.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Wushuang Huang ◽  
Xueqing Zheng ◽  
Mei Yang ◽  
Ruiqi Li ◽  
Yaling Song

AbstractCircadian rhythm is involved in the development and diseases of many tissues. However, as an essential environmental regulating factor, its effect on amelogenesis has not been fully elucidated. The present study aims to investigate the correlation between circadian rhythm and ameloblast differentiation and to explore the mechanism by which circadian genes regulate ameloblast differentiation. Circadian disruption models were constructed in mice for in vivo experiments. An ameloblast-lineage cell (ALC) line was used for in vitro studies. As essential molecules of the circadian system, Bmal1 and Per2 exhibited circadian expression in ALCs. Circadian disruption mice showed reduced amelogenin (AMELX) expression and enamel matrix secretion and downregulated expression of BMAL1, PER2, PPARγ, phosphorylated AKT1 and β-catenin, cytokeratin-14 and F-actin in ameloblasts. According to previous findings and our study, BMAL1 positively regulated PER2. Therefore, the present study focused on PER2-mediated ameloblast differentiation and enamel formation. Per2 knockdown decreased the expression of AMELX, PPARγ, phosphorylated AKT1 and β-catenin, promoted nuclear β-catenin accumulation, inhibited mineralization and altered the subcellular localization of E-cadherin in ALCs. Overexpression of PPARγ partially reversed the above results in Per2-knockdown ALCs. Furthermore, in in vivo experiments, the length of incisor eruption was significantly decreased in the circadian disturbance group compared to that in the control group, which was rescued by using a PPARγ agonist in circadian disturbance mice. In conclusion, through regulation of the PPARγ/AKT1/β-catenin signalling axis, PER2 played roles in amelogenin expression, cell junctions and arrangement, enamel matrix secretion and mineralization during ameloblast differentiation, which exert effects on enamel formation.


2007 ◽  
Vol 25 (18_suppl) ◽  
pp. 14143-14143 ◽  
Author(s):  
A. Telekes ◽  
E. Rásó

14143 Background: The positive effect of the wheat germ extract Avemar has already been proved in cancer. Compared to the control group significantly longer survival times were achieved in both in vivo experiments and clinical studies. Inhibition of cell growth was also detected in K562 human leukaemia cell line in vitro. Avemar given p.o.(3 g/kg) resulted in significant increase of the survival time compared to the control group (p<0.005 Mann-Whitney) in i.v. implanted K562 xenograft model, which was practically the same as the effect of Gleevec treatment. Since, the mechanism(s) of action of Avemar is still not properly characterized a kinase expression panel in K562 in vitro model was examined. Methods: K562 cells (8x105 cell/ml), were treated with Avemar (500 μg/ml) and mRNS from 3–3 parallel samples and their appropriate controls were isolated 24, 48 hours after the treatment and 24 hours after washing the cells previously treated with Avemar for 48 hours. To determine the kinase expression pattern Kinase OpenArray™ plates were used, having over 500 kinase genes with controls in quadruplicates in each plate. Changes in expression was declared if the average value was over 1 (2-fold change in mRNA copy number) and the standard deviation was relatively small (2xSTDEV = AVERAGE). Results: We have found 16 kinases which expression has temporary or durative (maintained for 24 hour after washing) decreased (e.g.: CCL2, ABR, FLT1, EphB6, TGFa) and 30 which expression has increased (e.g.: CPT1B, IRE1, ITK, RON, LTK, EphB2, FASTK). Conclusions: Our result demonstrated that many of the kinases which expression was altered by Avemar treatment is known to participate in cell cycle, cell migration, apoptosis and signal transduction. Thus, our results might shed light on the main mechanism(s) of action of Avemar and raise the possibility to identify the active substance(es) of this natural extract. No significant financial relationships to disclose.


Nutrients ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 1512 ◽  
Author(s):  
Alice König ◽  
Bettina Schwarzinger ◽  
Verena Stadlbauer ◽  
Peter Lanzerstorfer ◽  
Marcus Iken ◽  
...  

Inhibition of intestinal glucose resorption can serve as an effective strategy for the prevention of an increase in blood glucose levels. We have recently shown that various extracts prepared from guava (Psidium guajava) inhibit sodium-dependent glucose cotransporter 1 (SGLT1)- and glucose transporter 2 (GLUT2)-mediated glucose transport in vitro (Caco-2 cells) and in vivo (C57BL/6N mice). However, the efficacy in humans remains to be confirmed. For this purpose, we conducted a parallelized, randomized clinical study with young healthy adults. Thirty-one volunteers performed an oral glucose tolerance test (OGTT) in which the control group received a glucose solution and the intervention group received a glucose solution containing a guava fruit extract prepared by supercritical CO2 extraction. The exact same extract was used for our previous in vitro and in vivo experiments. Blood samples were collected prior to and up to two hours after glucose consumption to quantitate blood glucose and insulin levels. Our results show that, in comparison to the control group, consumption of guava fruit extract resulted in a significantly reduced increase in postprandial glucose response over the basal fasting plasma glucose levels after 30 min (Δ control 2.60 ± 1.09 mmol/L versus Δ intervention 1.96 ± 0.96 mmol/L; p = 0.039) and 90 min (Δ control 0.44 ± 0.74 mmol/L versus Δ intervention −0.18 ± 0.88 mmol/L; p = 0.023). In addition, we observed a slightly reduced, but non-significant insulin secretion (Δ control 353.82 ± 183.31 pmol/L versus Δ intervention 288.43 ± 126.19 pmol/L, p = 0.302). Interestingly, storage time and repeated freeze-thawing operations appeared to negatively influence the efficacy of the applied extract. Several analytical methods (HPLC-MS, GC-MS, and NMR) were applied to identify putative bioactive compounds in the CO2 extract used. We could assign several substances at relevant concentrations including kojic acid (0.33 mg/mL) and 5-hydroxymethylfurfural (2.76 mg/mL). Taken together, this clinical trial and previous in vitro and in vivo experiments confirm the efficacy of our guava fruit extract in inhibiting intestinal glucose resorption, possibly in combination with reduced insulin secretion. Based on these findings, the development of food supplements or functional foods containing this extract appears promising for patients with diabetes and for the prevention of insulin resistance. Trial registration: 415-E/2319/15-2018 (Ethics Commissions of Salzburg).


Pharmaceutics ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1593
Author(s):  
Min Yang ◽  
Xiaohui Wang ◽  
Fang Pu ◽  
Ying Liu ◽  
Jia Guo ◽  
...  

Exosomes, as natural nanovesicles, have become a spotlight in the field of cancer therapy due to their reduced immunogenicity and ability to overcome physiological barriers. However, the tumor targeting ability of exosomes needs to be improved before its actual application. Herein, a multiple targeted engineered exosomes nanoplatform was constructed through rare earth element Gd and Dy-doped and TAT peptide-modified carbon dots (CDs:Gd,Dy-TAT) encapsulated into RGD peptide engineered exosomes (Exo-RGD), which were used to enhance the effect of cancer imaging diagnosis and photothermal therapy. In vitro and in vivo experiments showed that the resulting CDs:Gd,Dy-TAT@Exo-RGD could effectively accumulate at cancer site with an increased concentration owing to the targeting peptides modification and exosomes encapsulation. The tumor therapy effects of mice treated with CDs:Gd,Dy-TAT@Exo-RGD were heightened compared with mice from the CDs:Gd,Dy control group. After intravenous injection of CDs:Gd,Dy-TAT@Exo-RGD into tumor-bearing mice, the temperature of tumors rose to above 50 °C under NIR irradiation and the localized hyperpyrexia induced by CDs could remarkably ablate tumors. The survival rate of the mice was 100% after 60 days. In addition, the CDs:Gd,Dy-TAT@Exo-RGD exhibited higher MRI/CT imaging contrast enhancement of tumor sites than that of CDs:Gd,Dy. Our study identified that engineered exosomes are a powerful tool for encapsulating multiple agents to enhance cancer theranostic efficiency and provide insight into precise personalized nanomedicine.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Cheng Ding ◽  
Chuang Yang ◽  
Tao Cheng ◽  
Xingyan Wang ◽  
Qiaojie Wang ◽  
...  

Abstract Background Inflammatory osteolysis, a major complication of total joint replacement surgery, can cause prosthesis failure and necessitate revision surgery. Macrophages are key effector immune cells in inflammatory responses, but excessive M1-polarization of dysfunctional macrophages leads to the secretion of proinflammatory cytokines and severe loss of bone tissue. Here, we report the development of macrophage-biomimetic porous SiO2-coated ultrasmall Se particles (porous Se@SiO2 nanospheres) to manage inflammatory osteolysis. Results Macrophage membrane-coated porous Se@SiO2 nanospheres(M-Se@SiO2) attenuated lipopolysaccharide (LPS)-induced inflammatory osteolysis via a dual-immunomodulatory effect. As macrophage membrane decoys, these nanoparticles reduced endotoxin levels and neutralized proinflammatory cytokines. Moreover, the release of Se could induce macrophage polarization toward the anti-inflammatory M2-phenotype. These effects were mediated via the inhibition of p65, p38, and extracellular signal-regulated kinase (ERK) signaling. Additionally, the immune environment created by M-Se@SiO2 reduced the inhibition of osteogenic differentiation caused by proinflammation cytokines, as confirmed through in vitro and in vivo experiments. Conclusion Our findings suggest that M-Se@SiO2 have an immunomodulatory role in LPS-induced inflammation and bone remodeling, which demonstrates that M-Se@SiO2 are a promising engineered nanoplatform for the treatment of osteolysis occurring after arthroplasty. Graphical Abstract


Sign in / Sign up

Export Citation Format

Share Document