scholarly journals Surgical Applications of Lymphatic Vessel Visualization Using Photoacoustic Imaging and Augmented Reality

2021 ◽  
Vol 11 (1) ◽  
pp. 194
Author(s):  
Yushi Suzuki ◽  
Hiroki Kajita ◽  
Shiho Watanabe ◽  
Marika Otaki ◽  
Keisuke Okabe ◽  
...  

Lymphaticovenular anastomosis (LVA) is a widely performed surgical procedure for the treatment of lymphedema. For good LVA outcomes, identifying lymphatic vessels and venules is crucial. Photoacoustic lymphangiography (PAL) is a new technology for visualizing lymphatic vessels. It can depict lymphatic vessels at high resolution; therefore, this study focused on how to apply PAL for lymphatic surgery. To visualize lymphatic vessels, indocyanine green was injected as a color agent. PAI-05 was used as the photoacoustic imaging device. Lymphatic vessels and veins were visualized at 797- and 835-nm wavelengths. First, it was confirmed whether the branching of the vasculature as depicted by the PAL was consistent with the actual branching of the vasculature as confirmed intraoperatively. Second, to use PAL images for surgical planning, preoperative photoacoustic images were superimposed onto the patient limb through augmented reality (AR) glasses (MOVERIO Smart Glass BT-30E). Lymphatics and venule markings drawn using AR glasses were consistent with the actual intraoperative images obtained during LVA. To anastomose multiple lymphatic vessels, a site with abundant venous branching was selected as the incision site; and selecting the incision site became easier. The anatomical morphology obtained by PAL matched the surgical field. AR-based marking could be very useful in future LVA.

Author(s):  
José Inácio ◽  
João Ribeiro ◽  
Jaime Campos ◽  
Sara Silva ◽  
Victor Alves

In the surgical field, the patient's needs and requirements increasingly follow the newest technological developments. Nowadays it is still problematic to implement different types of technologies in operating environments due to the drawbacks that these can bring to their users and their longstanding learning process. A research was carried out with the objective of clarifying concepts and gathering some existing approaches to the solution of these problems as well as the respective technologies used. This chapter addresses a new concept of mobile applications for surgical planning using augmented reality technologies. The proposed solution aims to help the surgeon from the planning stage to the surgery intervention itself. In addition to some examples and practical demonstrations of the solution, its implementation process and system architecture are described and explained. Based on the developed prototype, the advantages of its use in a surgical context are discussed, being pointed out some improvements to be made.


2019 ◽  
Vol 31 (1) ◽  
pp. 139-146 ◽  
Author(s):  
Camilo A. Molina ◽  
Nicholas Theodore ◽  
A. Karim Ahmed ◽  
Erick M. Westbroek ◽  
Yigal Mirovsky ◽  
...  

OBJECTIVEAugmented reality (AR) is a novel technology that has the potential to increase the technical feasibility, accuracy, and safety of conventional manual and robotic computer-navigated pedicle insertion methods. Visual data are directly projected to the operator’s retina and overlaid onto the surgical field, thereby removing the requirement to shift attention to a remote display. The objective of this study was to assess the comparative accuracy of AR-assisted pedicle screw insertion in comparison to conventional pedicle screw insertion methods.METHODSFive cadaveric male torsos were instrumented bilaterally from T6 to L5 for a total of 120 inserted pedicle screws. Postprocedural CT scans were obtained, and screw insertion accuracy was graded by 2 independent neuroradiologists using both the Gertzbein scale (GS) and a combination of that scale and the Heary classification, referred to in this paper as the Heary-Gertzbein scale (HGS). Non-inferiority analysis was performed, comparing the accuracy to freehand, manual computer-navigated, and robotics-assisted computer-navigated insertion accuracy rates reported in the literature. User experience analysis was conducted via a user experience questionnaire filled out by operators after the procedures.RESULTSThe overall screw placement accuracy achieved with the AR system was 96.7% based on the HGS and 94.6% based on the GS. Insertion accuracy was non-inferior to accuracy reported for manual computer-navigated pedicle insertion based on both the GS and the HGS scores. When compared to accuracy reported for robotics-assisted computer-navigated insertion, accuracy achieved with the AR system was found to be non-inferior when assessed with the GS, but superior when assessed with the HGS. Last, accuracy results achieved with the AR system were found to be superior to results obtained with freehand insertion based on both the HGS and the GS scores. Accuracy results were not found to be inferior in any comparison. User experience analysis yielded “excellent” usability classification.CONCLUSIONSAR-assisted pedicle screw insertion is a technically feasible and accurate insertion method.


ORL ◽  
2021 ◽  
pp. 1-10
Author(s):  
Claudia Scherl ◽  
Johanna Stratemeier ◽  
Nicole Rotter ◽  
Jürgen Hesser ◽  
Stefan O. Schönberg ◽  
...  

<b><i>Introduction:</i></b> Augmented reality can improve planning and execution of surgical procedures. Head-mounted devices such as the HoloLens® (Microsoft, Redmond, WA, USA) are particularly suitable to achieve these aims because they are controlled by hand gestures and enable contactless handling in a sterile environment. <b><i>Objectives:</i></b> So far, these systems have not yet found their way into the operating room for surgery of the parotid gland. This study explored the feasibility and accuracy of augmented reality-assisted parotid surgery. <b><i>Methods:</i></b> 2D MRI holographic images were created, and 3D holograms were reconstructed from MRI DICOM files and made visible via the HoloLens. 2D MRI slices were scrolled through, 3D images were rotated, and 3D structures were shown and hidden only using hand gestures. The 3D model and the patient were aligned manually. <b><i>Results:</i></b> The use of augmented reality with the HoloLens in parotic surgery was feasible. Gestures were recognized correctly. Mean accuracy of superimposition of the holographic model and patient’s anatomy was 1.3 cm. Highly significant differences were seen in position error of registration between central and peripheral structures (<i>p</i> = 0.0059), with a least deviation of 10.9 mm (centrally) and highest deviation for the peripheral parts (19.6-mm deviation). <b><i>Conclusion:</i></b> This pilot study offers a first proof of concept of the clinical feasibility of the HoloLens for parotid tumor surgery. Workflow is not affected, but additional information is provided. The surgical performance could become safer through the navigation-like application of reality-fused 3D holograms, and it improves ergonomics without compromising sterility. Superimposition of the 3D holograms with the surgical field was possible, but further invention is necessary to improve the accuracy.


2021 ◽  
Vol 45 (5) ◽  
Author(s):  
Yuri Nagayo ◽  
Toki Saito ◽  
Hiroshi Oyama

AbstractThe surgical education environment has been changing significantly due to restricted work hours, limited resources, and increasing public concern for safety and quality, leading to the evolution of simulation-based training in surgery. Of the various simulators, low-fidelity simulators are widely used to practice surgical skills such as sutures because they are portable, inexpensive, and easy to use without requiring complicated settings. However, since low-fidelity simulators do not offer any teaching information, trainees do self-practice with them, referring to textbooks or videos, which are insufficient to learn open surgical procedures. This study aimed to develop a new suture training system for open surgery that provides trainees with the three-dimensional information of exemplary procedures performed by experts and allows them to observe and imitate the procedures during self-practice. The proposed system consists of a motion capture system of surgical instruments and a three-dimensional replication system of captured procedures on the surgical field. Motion capture of surgical instruments was achieved inexpensively by using cylindrical augmented reality (AR) markers, and replication of captured procedures was realized by visualizing them three-dimensionally at the same position and orientation as captured, using an AR device. For subcuticular interrupted suture, it was confirmed that the proposed system enabled users to observe experts’ procedures from any angle and imitate them by manipulating the actual surgical instruments during self-practice. We expect that this training system will contribute to developing a novel surgical training method that enables trainees to learn surgical skills by themselves in the absence of experts.


Author(s):  
Pieter C. van de Woestijne ◽  
Wouter Bakhuis ◽  
Amir H. Sadeghi ◽  
Jette J. Peek ◽  
Yannick J.H.J. Taverne ◽  
...  

Background Major aortopulmonary collateral arteries (MAPCAs), as seen in patients with pulmonary atresia, are arteries that supply blood from the aorta to the lungs and often require surgical intervention. To achieve complete repair in the least number of interventions, optimal imaging of the pulmonary arterial anatomy and MAPCAs is critical. 3D virtual reality (3D-VR) is a promising and upcoming new technology that could potentially ameliorate current imaging shortcomings. Methods A retrospective, proof-of-concept study was performed of all operated patients with pulmonary atresia and MAPCAs at our center between 2010 and 2020 with a preoperative computed tomography (CT) scan. CT images were reviewed by two congenital cardiac surgeons in 3D-VR to determine additional value of VR for MAPCA imaging compared to conventional CT and for preoperative planning of MAPCA repair. Results 3D-VR visualizations were reconstructed from CT scans of seven newborns where the enhanced topographic anatomy resulted in improved visualization of MAPCA. In addition, surgical planning was improved since new observations or different preoperative plans were apparent in 4 out of 7 cases. After the initial setup, VR software and hardware was reported to be easy and intuitive to use. Conclusions This study showed technical feasibility of 3D-VR reconstruction of children with immersive visualization of topographic anatomy in an easy-to-use format leading to an improved surgical planning of MAPCA surgery. Future prospective studies are required to investigate the clinical benefits in larger populations.


Author(s):  
Luiz M. A. Santos

Abstract In the modern industrial scenario, the technological assets of new working methods and machinery in factory plants grow rapidly. Nevertheless, a reverse situation occurs in terms of availability of trained personnel within the subject area. Moreover, even the most experienced technician is faced with a continual need to update his/her skills. In respect to the training activities, more realism and a greater effectiveness could be achieved if the trainee could learn a new technology directly in the real working place. In this paper, considerations are presented for the use of an innovative hardware and Augmented Reality as platform components for the learning material to this training scenario. Both components are described with emphasis on their suitability to the target activity. The proposed platform encompasses a body-worn and wireless-networked computer, and software with specific features to assist the computer user in his/her task by enriching the content of the application environment. The software component, which addresses the application goals and required adaptations to the platform, is presented.


2017 ◽  
Vol 37 (suppl_1) ◽  
Author(s):  
Andreea Milasan ◽  
François Dallaire ◽  
Gabriel Jean ◽  
Jean-Claude Tardif ◽  
Yahye Merhi ◽  
...  

Rationale: Lymphatic vessels (LVs) are now recognized as prerequisite players in the modulation of cholesterol removal from the artery wall in experimental conditions of plaque regression, and a particular attention has been brought on the role of the collecting LVs in early atherosclerosis-related lymphatic dysfunction. Whereas recent findings revealed that apoA-I restores the neovascularization capacity of the lymphatic system during tumor necrosis factor-induced inflammation, the effect of apoA-I on collecting LV function during atherosclerosis has not been tested. Objective: In the present study, we address whether and how apoA-I can enhance collecting LV function in atherosclerosis-associated lymphatic dysfunction. Methods and Results: A 6-week systemic treatment with lipid-free apoA-I enhanced lymphatic transport and abrogated collecting lymphatic vessel permeability in atherosclerotic Ldlr –/– mice when compared to control. As injection of apoA-I has been shown to protect wild-type mice against flow restriction-induced thrombosis, and that platelets are identified as key elements in the maintenance of lymphatic vessel integrity via their interaction with lymphatic endothelial cells (LECs), we have tested whether the effects of apoA-I could be mediated through a platelet-dependent mechanism. Our in vivo results show that apoA-I kinetics in lymph reflected that of blood. Ex vivo experiments performed with washed platelets isolated from mouse blood reveal that apoA-I decreased thrombin-induced but not podoplanin-induced platelet aggregation. Whereas this result suggests that apoA-I limits platelet thrombotic potential in blood but not in lymph, we demonstrate that treatment of human LECs with apoA-I increases the adhesion of bridge-like platelets on human LECs. Conclusions: Our results suggest that apoA-I can mediate beneficial effects on lymphatic function by promoting platelet adhesion to the lymphatic endothelium and consequently restore collecting LV integrity. Altogether, we bring forward a new pleiotropic role for apoA-I in lymphatic function and unveil new potential therapeutic targets for the prevention and treatment of atherosclerosis.


Author(s):  
Prabha Selvaraj ◽  
Sumathi Doraikannan ◽  
Anantha Raman Rathinam ◽  
Balachandrudu K. E.

Today technology evolves in two different directions. The first one is to create a new technology for our requirement and solve the problem, and the second one is to do it with the existing technology. This chapter will discuss in detail augmented reality and its use in the real world and also its application domains like medicine, education, health, gaming, tourism, film and entertainment, architecture, and development. Many think that AR is only for smartphones, but there are different ways to enhance the insight of the world. Augmented realities can be presented on an extensive range of displays, monitors, screens, handheld devices, or glasses. This chapter will provide the information about the key components of AR devices. This chapter gives a view on different types of AR and also projects how the technology can be adapted for multiple purposes based on the required type of view.


Author(s):  
Gerardo Reyes Ruiz ◽  
Samuel Olmos Peña ◽  
Marisol Hernández Hernández

New technologies have changed the way today's own label products are being offered. Today the Internet and even more the so-called social networks have played key roles in dispersing any particular product in a more efficient and dynamic sense. Also, having a smartphone and a wireless high-speed network are no longer a luxury or a temporary fad, but rather a necessity for the new generations. These technological advances and new marketing trends have not gone unnoticed by the medium and large stores. The augmented reality applied to interactive catalogs is a new technology that supports the adding of virtual reality to a real environment which in turn makes it a tool for discovering new uses, forms, and in this case, spending habits. The challenge for companies with their private labels in achieving their business objectives, is providing customers with products and services of the highest quality, thus promoting the efficient and streamlined use of all resources that are accounted for and at the same time promoting the use of new information technologies as a strategic competitive.


Sign in / Sign up

Export Citation Format

Share Document