scholarly journals Targeting of the Cancer-Associated Fibroblast—T-Cell Axis in Solid Malignancies

2019 ◽  
Vol 8 (11) ◽  
pp. 1989 ◽  
Author(s):  
Tom J. Harryvan ◽  
Els M. E. Verdegaal ◽  
James C. H. Hardwick ◽  
Lukas J. A. C. Hawinkels ◽  
Sjoerd H. van der Burg

The introduction of a wide range of immunotherapies in clinical practice has revolutionized the treatment of cancer in the last decade. The majority of these therapeutic modalities are centered on reinvigorating a tumor-reactive cytotoxic T-cell response. While impressive clinical successes are obtained, the majority of cancer patients still fail to show a clinical response, despite the fact that their tumors express antigens that can be recognized by the immune system. This is due to a series of other cellular actors, present in or attracted towards the tumor microenvironment, including regulatory T-cells, myeloid-derived suppressor cells and cancer-associated fibroblasts (CAFs). As the main cellular constituent of the tumor-associated stroma, CAFs form a heterogeneous group of cells which can drive cancer cell invasion but can also impair the migration and activation of T-cells through direct and indirect mechanisms. This singles CAFs out as an important next target for further optimization of T-cell based immunotherapies. Here, we review the recent literature on the role of CAFs in orchestrating T-cell activation and migration within the tumor microenvironment and discuss potential avenues for targeting the interactions between fibroblasts and T-cells.

2021 ◽  
Vol 39 (15_suppl) ◽  
pp. e14565-e14565
Author(s):  
Amit Adhikari ◽  
Juliete Macauley ◽  
Yoshimi Johnson ◽  
Mike Connolly ◽  
Tim Coleman ◽  
...  

e14565 Background: Glioblastoma (GBM) is an aggressive form of brain cancer with a median survival of 15 months which has remained unchanged despite technological advances in the standard of care. GBM cells specifically express human cytomegalovirus (HCMV) proteins providing a unique opportunity for targeted therapy. Methods: We utilized our UNITE (UNiversal Intracellular Targeted Expression) platform to develop a multi-antigen DNA vaccine (ITI-1001) that codes for the HCMV proteins- pp65, gB and IE-1. The UNITE platform involves lysosomal targeting technology, fusing lysosome-associated protein 1 (LAMP1) with target antigens resulting in increased antigen presentation by MHC-I and II. ELISpot, flow cytometry and ELISA techniques were used to evaluate the vaccine immunogenicity and a syngeneic, orthotopic GBM mouse model that expresses HCMV proteins was used for efficacy studies. The tumor microenvironment studies were done using flow cytometry and MSD assay. Results: ITI-1001 vaccination showed a robust antigen-specific CD4 and CD8 T cell response in addition to a strong humoral response. Using GBM mouse model, therapeutic treatment of ITI-1001 vaccine resulted in ̃56% survival with subsequent long-term immunity. Investigating the tumor microenvironment showed significant CD4 T cell infiltration as well as enhanced Th1 and CD8 T cell activation. Regulatory T cells were also upregulated upon ITI-1001 vaccination and would be an attractive target to further improve this therapy. In addition, tumor burden negatively correlated with number of activated CD4 T cells (CD4 IFNγ+) reiterating the importance of CD4 activation in ITI-1001 efficacy and potentially identifying treatment responders and non-responders. Further characterization of these two groups showed high infiltration of CD3+, CD4+ and CD8+ T cells in responders compared with non- responders along with higher CD8 T cell activation. Conclusions: Thus, we show that vaccination with HCMV antigens using the ITI-1001-UNITE platform generates strong cellular and humoral immune responses, triggering significant anti-tumor activity that leads to enhanced survival in mice with GBM.


2021 ◽  
Author(s):  
Philip E Brandish ◽  
Anthony Palmieri ◽  
Gulesi Ayanoglu ◽  
Jeanne Baker ◽  
Raphael Bueno ◽  
...  

Tumor myeloid suppressor cells impede response to T cell checkpoint immunotherapy. Immunoglobulin-like transcript 3 (ILT3, gene name, LILRB4) expressed on dendritic cells (DCs) promotes antigen-specific tolerance. Circulating monocytic MDSCs that express ILT3 have been linked to clinical outcomes and a soluble form of ILT3 is elevated in certain cancers. We find that LILRB4 expression is correlated with Gene Expression Profile of T-cell inflamed tumor microenvironment shown to be significantly associated with response to the anti-PD1 antibody pembrolizumab across several tumor types. A potent and selective anti-ILT3 mAb effectively antagonized IL-10 polarization of DCs and enabled T cell priming. In an MLR assay anti-ILT3 combined with pembrolizumab afforded greater CD8+ T cell activation compared to either agent alone. Anti-ILT3 antibodies impaired the acquisition of a suppressive phenotype of monocytes co-cultured with SK-MEL-5 cancer cells, accompanied by a reduction in surface detection of peptidase inhibitor 16, a cis interaction candidate for ILT3. Growth of myeloid cell-abundant SK-MEL-5 tumors was abrogated by ILT3 blockade and remodeling of the immune tumor microenvironment was evident by CyTOF. These data support the testing of anti-ILT3 antibodies for the treatment of a wide range of solid tumors replete with myeloid cells.


2020 ◽  
Vol 8 (2) ◽  
pp. e001521
Author(s):  
Javier Arranz-Nicolás ◽  
Miguel Martin-Salgado ◽  
Cristina Rodríguez-Rodríguez ◽  
Rosa Liébana ◽  
Maria C Moreno-Ortiz ◽  
...  

BackgroundThe inhibitory functions triggered by the programmed cell death-1 (PD-1) receptor following binding to its ligand (PD-L1) protect healthy organs from cytotoxic T cells, and neutralize antitumor T cell attack. Antibody-based therapies to block PD-1/PD-L1 interaction have yielded notable results, but most patients eventually develop resistance. This failure is attributed to CD8+ T cells achieving hyporesponsive states from which recovery is hardly feasible. Dysfunctional T cell phenotypes are favored by a sustained imbalance in the diacylglycerol (DAG)- and Ca2+-regulated transcriptional programs. In mice, DAG kinase ζ (DGKζ) facilitates DAG consumption, limiting T cell activation and cytotoxic T cell responses. DGKζ deficiency facilitates tumor rejection in mice without apparent adverse autoimmune effects. Despite its therapeutic potential, little is known about DGKζ function in human T cells, and no known inhibitors target this isoform.MethodsWe used a human triple parameter reporter cell line to examine the consequences of DGKζ depletion on the transcriptional restriction imposed by PD-1 ligation. We studied the effect of DGKζ deficiency on PD-1 expression dynamics, as well as the impact of DGKζ absence on the in vivo growth of MC38 adenocarcinoma cells.ResultsWe demonstrate that DGKζ depletion enhances DAG-regulated transcriptional programs, promoting interleukin-2 production and partially counteracting PD-1 inhibitory functions. DGKζ loss results in limited PD-1 expression and enhanced expansion of cytotoxic CD8+ T cell populations. This is observed even in immunosuppressive milieus, and correlates with the reduced ability of MC38 adenocarcinoma cells to form tumors in DGKζ-deficient mice.ConclusionsOur results, which define a role for DGKζ in the control of PD-1 expression, confirm DGKζ potential as a therapeutic target as well as a biomarker of CD8+ T cell dysfunctional states.


Author(s):  
M E Jacobs ◽  
J N Pouw ◽  
M A Olde Nordkamp ◽  
T R D J Radstake ◽  
E F A Leijten ◽  
...  

Abstract Background Signals at the contact site of antigen-presenting cells (APCs) and T cells help orchestrate the adaptive immune response. CD155 on APCs can interact with the stimulatory receptor DNAM1 or inhibitory receptor TIGIT on T cells. The CD155/DNAM1/TIGIT axis is under extensive investigation as immunotherapy target in inflammatory diseases including cancer, chronic infection and autoimmune diseases. We investigated a possible role for CD155/DNAM1/TIGIT signaling in psoriatic disease. Methods By flow cytometry we analyzed peripheral blood mononuclear cells of patients with psoriasis (n=20) or psoriatic arthritis (n=21), and healthy individuals (n=7). We measured CD155, TIGIT and DNAM1 expression on leukocyte subsets and compared activation-induced cytokine production between CD155-positive and -negative APCs. We assessed the effects of TIGIT and DNAM1 blockade on T cell activation, and related the expression of CD155/DNAM1/TIGIT axis molecules to measures of disease activity. Results High CD155 expression associates with TNF production in myeloid and plasmacytoid dendritic cells (DC). In CD1c+ myeloid DC, activation-induced CD155 expression associates with increased HLA-DR expression. CD8 T cells - but not CD4 T cells - express high levels of TIGIT. DNAM1 blockade decreases T cell pro-inflammatory cytokine production, while TIGIT blockade increased T cell proliferation. Finally, T cell TIGIT expression shows an inverse correlation with inflammation biomarkers in psoriatic disease. Conclusion CD155 is increased on pro-inflammatory APCs, while the receptors DNAM1 and TIGIT expressed on T cells balance the inflammatory response by T cells. In psoriatic disease, low TIGIT expression on T cells is associated with systemic inflammation.


Blood ◽  
2005 ◽  
Vol 105 (6) ◽  
pp. 2436-2442 ◽  
Author(s):  
Ettore Biagi ◽  
Gianpietro Dotti ◽  
Eric Yvon ◽  
Edward Lee ◽  
Martin Pule ◽  
...  

AbstractClinical benefits from monoclonal antibody therapy for B-chronic lymphocytic leukemia (B-CLL) have increased interest in developing additional immunotherapies for the disease. CD40 ligand is an accessory signal for T-cell activation and can overcome T-cell anergy. The OX40-OX40 ligand pathway is involved in the subsequent expansion of memory antigen-specific T cells. We expressed both CD40L and OX40L on B-CLL cells by exploiting the phenomenon of molecular transfer from fibroblasts overexpressing these ligands. We analyzed the effects of the modified B-CLL cells on the number, phenotype, and cytotoxic function of autologous T cells in 7 B-CLL patients. Transfer of CD40L and OX40L was observed in all and was followed by the up-regulation of B7-1 and B7-2. The culture of CD40L/OX40L-expressing B-CLL cells with autologous T cells generated CD4+/CD8+ cytotoxic T-cell lines, which secreted interferon-γ (IFN-γ) and granzyme-B/perforin in response to autologous, but not to allogeneic, B-CLL cells or to autologous T-cell blasts. CD40L or OX40L alone was insufficient to expand tumor-reactive T cells. The combination of CD40L and OX40L on B-CLL cells may allow the generation of therapeutic immune responses to B-CLL, either by active immunization with modified tumor cells or by adoptive immunotherapy with tumor-reactive autologous T cells.


2020 ◽  
Vol 38 (15_suppl) ◽  
pp. 3101-3101
Author(s):  
Alexander Starodub ◽  
Sarina Anne Piha-Paul ◽  
Raghad Karim ◽  
Curtis Ruegg ◽  
Victoria Smith ◽  
...  

3101 Background: Overcoming the immune-suppressive tumor environment induced by myeloid-derived suppressor cells (MDSC) is a major challenge in immune therapy. CD33 signaling in immature myeloid cells promotes expansion of MDSC and production of immune-suppressive factors. AMV564 is a bivalent, bispecific T-cell engager that binds CD3 and CD33. Preferential binding of AMV564 to areas of high CD33 density enables selective targeting of MDSC. Ex vivo data (Cheng 2017; Blood;130:51) and an ongoing clinical trial in acute myeloid leukemia (NCT03144245) demonstrate the ability of AMV564 to deplete MDSC while sparing monocytes and neutrophils. Methods: In this 3+3 dose escalation study, patients with advanced solid tumors receive AMV564 once daily via subcutaneous (SC) injection for 2 out of 3 wks per cycle, alone or in combination with pembrolizumab (200 mg every 3 wks). Key objectives are to evaluate AMV564 safety, identify a maximum tolerated or recommended phase 2 dose, and evaluate PK, immunophenotype of myeloid and T cell compartments, and preliminary efficacy. Results: Eleven patients have been enrolled: 8 monotherapy (3 at 15 mcg/d, 5 at 50 mcg/d) and 3 combination (5 mcg/d). Tumor types include ovarian (n = 2), small bowel, gastroesophageal junction, endometrial, rectal, penile, urothelial, squamous cell carcinoma (skin), appendiceal, and non-small cell lung. AMV564 was associated with grade (G) 1-2 injection site reactions and G1-2 fevers, which were manageable with acetaminophen and diphenhydramine, as well as G2 weight gain and G3 anemia. No dose-liming toxicity has been observed in any cohort. Three monotherapy patients (15 mcg/d) were evaluable for efficacy with ≥1 on-treatment scan; 2 had SD and 1 PD per RECIST 1.1 criteria. T cell activation, as shown by redistribution from the periphery (margination), was apparent in the first week of dosing for most patients. Compensatory myelopoiesis led to initial expansion of MDSC which were then depleted by AMV564. Increased cytotoxic T cell activation and T-helper (Th) 1 response was evidenced by increased T-bet positive CD4 and CD8 cells and controlled or decreased regulatory T cells. In some patients, effector memory CD8 cell populations (Tem and Temra) were expanded. Conclusions: AMV564 is safe and tolerable when administered SC at doses of 15 mcg/d alone and 5 mcg/d in combination with pembrolizumab. AMV564 depleted MDSC populations and altered T cell profiles consistent with activation of cytotoxic T cells and a Th1 response. Clinical trial information: NCT04128423 .


1988 ◽  
Vol 167 (5) ◽  
pp. 1697-1707 ◽  
Author(s):  
B Fleischer ◽  
H Schrezenmeier

Staphylococcal enterotoxins (SE) are the most potent mitogens for T lymphocytes known; concentrations of less than 10(-9) M are sufficient for T cell activation. The mechanism of T cell activation by SE is unknown. We have used cloned human cytotoxic and proliferative T lymphocytes to dissect the molecular mechanism of T cell activation by SE. With rare exceptions, all TCR alpha/beta chain-expressing T cell clones of CD4+ or CD8+ phenotype, as well as CD4-8- TCR alpha/beta chain negative chain-expressing T lymphocyte clones, respond with proliferation and/or cytotoxicity to SE. For triggering of all these clones, the presence of autologous or allogeneic MHC class II molecules on accessory or target cells is necessary. This requirement for class II antigens is not due to an immunological recognition of processed SE, since inhibition of antigen processing has no influence on the T cell response to SE. SE acts on the T cells directly since (a) they stimulate a rise in intracellular calcium concentration in T cell lines or purified T cells, and (b) accessory cells can be replaced by phorbolesters in the proliferative activation of resting T cells by SE. Furthermore, the T cell response to SE shows extensive clonal heterogeneity. These results suggest that SE are functionally bivalent mitogens binding highly selectively to HLA class II molecules and the TCR. Thus, compared with other polyclonal T cell activating agents, activation with SE most closely mimicks the physiological way of MHC-restricted antigen recognition by T lymphocytes.


2021 ◽  
Vol 12 ◽  
Author(s):  
Aurélien Azam ◽  
Sergio Mallart ◽  
Stephane Illiano ◽  
Olivier Duclos ◽  
Catherine Prades ◽  
...  

Non-natural modifications are widely introduced into peptides to improve their therapeutic efficacy, but their impact on immunogenicity remains largely unknown. As the CD4 T-cell response is a key factor in triggering immunogenicity, we investigated the effect of introducing D-amino acids (Daa), amino isobutyric acid (Aib), N-methylation, Cα-methylation, reduced amide, and peptoid bonds into an immunoprevalent T-cell epitope on binding to a set of HLA-DR molecules, recognition, and priming of human T cells. Modifications are differentially accepted at multiple positions, but are all tolerated in the flanking regions. Introduction of Aib and Daa in the binding core had the most deleterious effect on binding to HLA-DR molecules and T-cell activation. Their introduction at the positions close to the P1 anchor residue abolished T-cell priming, suggesting they might be sufficient to dampen peptide immunogenicity. Other modifications led to variable effects on binding to HLA-DR molecules and T-cell reactivity, but none exhibited an increased ability to stimulate T cells. Altogether, non-natural modifications appear generally to diminish binding to HLA-DR molecules and hence T-cell stimulation. These data might guide the design of therapeutic peptides to make them less immunogenic.


2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi203-vi204
Author(s):  
Guimei Tian ◽  
Linchun Jin ◽  
Devshri Doshi ◽  
Aida Karachi ◽  
Mariana Dajac ◽  
...  

Abstract INTRODUCTION Glioblastoma are a challenge for neuro-oncologists and current therapies are minimally effective. Standard-of- care treatment is almost inevitably followed by disease recurrence. Adoptive T cell transfer has emerged as a viable therapeutic for brain malignancies. While promising, the efficacy of this approach is often limited by a complex immunosuppressive tumor microenvironment. These complexities mean that more sophisticated T cell products are required. OBJECTIVES The brain tumor microenvironment provides local restraints via metabolic competition suppressing antitumor immunity, specifically inhibiting infiltration and tumoricidal functions of host and adoptively transferred tumor-reactive T cells. The overall goal of this project is to test new treatments to reverse immune dysfunction in cancer through the regulation of T cell metabolic signaling. We propose that modulating glucose pathway in T cells can potentiate their anti-tumor activity once adoptively transferred. METHODS T cells glucose metabolic pathway was modulated via glucose transporters overexpression. The functionality of metabolically modified T cells was investigated in murine and human models. RESULTS We demonstrated the existence of a competition for glucose between T cells and tumor cells, with tumor cells imposing glucose restriction mediating T cell hyporesponsiveness. Overexpression of glucose transporters such as Glut1 and Glut3 increased T cell glucose utilization and provide survival/growth advantage and enhanced T cell activation in glucose-restricted conditions. We also established that glucose transporter overexpression improves intratumoral infiltration of adoptively transferred T cells. CONCLUSION This project integrates fundamental concepts of tumor and immune metabolism in the design of immunotherapy and confirms that immunometabolism represents a viable target for new cancer therapy to treat brain tumors.


2020 ◽  
Vol 6 (50) ◽  
pp. eabd1631
Author(s):  
Weijing Yang ◽  
Hongzhang Deng ◽  
Shoujun Zhu ◽  
Joseph Lau ◽  
Rui Tian ◽  
...  

Artificial antigen-presenting cells (aAPCs) can stimulate CD8+ T cell activation. While nanosized aAPCs (naAPCs) have a better safety profile than microsized (maAPCs), they generally induce a weaker T cell response. Treatment with aAPCs alone is insufficient due to the lack of autologous antigen-specific CD8+ T cells. Here, we devised a nanovaccine for antigen-specific CD8+ T cell preactivation in vivo, followed by reactivation of CD8+ T cells via size-transformable naAPCs. naAPCs can be converted to maAPCs in tumor tissue when encountering preactivated CD8+ T cells with high surface redox potential. In vivo study revealed that naAPC’s combination with nanovaccine had an impressive antitumor efficacy. The methodology can also be applied to chemotherapy and photodynamic therapy. Our findings provide a generalizable approach for using size-transformable naAPCs in vivo for immunotherapy in combination with nanotechnologies that can activate CD8+ T cells.


Sign in / Sign up

Export Citation Format

Share Document