scholarly journals The 3D Printing of Calcium Phosphate with K-Carrageenan under Conditions Permitting the Incorporation of Biological Components—A Method

2018 ◽  
Vol 9 (4) ◽  
pp. 57 ◽  
Author(s):  
Cindy Kelder ◽  
Astrid Bakker ◽  
Jenneke Klein-Nulend ◽  
Daniël Wismeijer

Critical-size bone defects are a common clinical problem. The golden standard to treat these defects is autologous bone grafting. Besides the limitations of availability and co-morbidity, autografts have to be manually adapted to fit in the defect, which might result in a sub-optimal fit and impaired healing. Scaffolds with precise dimensions can be created using 3-dimensional (3D) printing, enabling the production of patient-specific, ‘tailor-made’ bone substitutes with an exact fit. Calcium phosphate (CaP) is a popular material for bone tissue engineering due to its biocompatibility, osteoconductivity, and biodegradable properties. To enhance bone formation, a bioactive 3D-printed CaP scaffold can be created by combining the printed CaP scaffold with biological components such as growth factors and cytokines, e.g., vascular endothelial growth factor (VEGF), bone morphogenetic protein-2 (BMP-2), and interleukin-6 (IL-6). However, the 3D-printing of CaP with a biological component is challenging since production techniques often use high temperatures or aggressive chemicals, which hinders/inactivates the bioactivity of the incorporated biological components. Therefore, in our laboratory, we routinely perform extrusion-based 3D-printing with a biological binder at room temperature to create porous scaffolds for bone healing. In this method paper, we describe in detail a 3D-printing procedure for CaP paste with K-carrageenan as a biological binder.

2018 ◽  
Vol 15 (3) ◽  
pp. 341-349 ◽  
Author(s):  
Alexander I Evins ◽  
John Dutton ◽  
Sayem S Imam ◽  
Amal O Dadi ◽  
Tao Xu ◽  
...  

Abstract BACKGROUND Currently, implantation of patient-specific cranial prostheses requires reoperation after a period for design and formulation by a third-party manufacturer. Recently, 3-dimensional (3D) printing via fused deposition modeling has demonstrated increased ease of use, rapid production time, and significantly reduced costs, enabling expanded potential for surgical application. Three-dimensional printing may allow neurosurgeons to remove bone, perform a rapid intraoperative scan of the opening, and 3D print custom cranioplastic prostheses during the remainder of the procedure. OBJECTIVE To evaluate the feasibility of using a commercially available 3D printer to develop and produce on-demand intraoperative patient-specific cranioplastic prostheses in real time and assess the associated costs, fabrication time, and technical difficulty. METHODS Five different craniectomies were each fashioned on 3 cadaveric specimens (6 sides) to sample regions with varying topography, size, thickness, curvature, and complexity. Computed tomography-based cranioplastic implants were designed, formulated, and implanted. Accuracy of development and fabrication, as well as implantation ability and fit, integration with exiting fixation devices, and incorporation of integrated seamless fixation plates were qualitatively evaluated. RESULTS All cranioprostheses were successfully designed and printed. Average time for design, from importation of scan data to initiation of printing, was 14.6 min and average print time for all cranioprostheses was 108.6 min. CONCLUSION On-demand 3D printing of cranial prostheses is a simple, feasible, inexpensive, and rapid solution that may help improve cosmetic outcomes; significantly reduce production time and cost—expanding availability; eliminate the need for reoperation in select cases, reducing morbidity; and has the potential to decrease perioperative complications including infection and resorption.


2016 ◽  
Vol 7 ◽  
pp. 1794-1799 ◽  
Author(s):  
Aleksey A Egorov ◽  
Alexander Yu Fedotov ◽  
Anton V Mironov ◽  
Vladimir S Komlev ◽  
Vladimir K Popov ◽  
...  

We demonstrate a relatively simple route for three-dimensional (3D) printing of complex-shaped biocompatible structures based on sodium alginate and calcium phosphate (CP) for bone tissue engineering. The fabrication of 3D composite structures was performed through the synthesis of inorganic particles within a biopolymer macromolecular network during 3D printing process. The formation of a new CP phase was studied through X-ray diffraction, Fourier transform infrared spectroscopy and scanning electron microscopy. Both the phase composition and the diameter of the CP particles depend on the concentration of a liquid component (i.e., the “ink”). The 3D printed structures were fabricated and found to have large interconnected porous systems (mean diameter ≈800 μm) and were found to possess compressive strengths from 0.45 to 1.0 MPa. This new approach can be effectively applied for fabrication of biocompatible scaffolds for bone tissue engineering constructions.


Gels ◽  
2022 ◽  
Vol 8 (1) ◽  
pp. 28
Author(s):  
Helena Herrada-Manchón ◽  
David Rodríguez-González ◽  
Manuel Alejandro Fernández ◽  
Nathan William Kucko ◽  
Florence Barrère-de Groot ◽  
...  

The production of patient-specific bone substitutes with an exact fit through 3D printing is emerging as an alternative to autologous bone grafting. To the success of tissue regeneration, the material characteristics such as porosity, stiffness, and surface topography have a strong influence on the cell–material interaction and require significant attention. Printing a soft hydrocolloid-based hydrogel reinforced with irregularly-shaped microporous biphasic calcium phosphate (BCP) particles (150–500 µm) is an alternative strategy for the acquisition of a complex network with good mechanical properties that could fulfill the needs of cell proliferation and regeneration. Three well-known hydrocolloids (sodium alginate, xanthan gum, and gelatin) have been combined with BCP particles to generate stable, homogenous, and printable solid dispersions. Through rheological assessment, it was determined that the crosslinking time, printing process parameters (infill density percentage and infill pattern), as well as BCP particle size and concentration all influence the stiffness of the printed matrices. Additionally, the swelling behavior on fresh and dehydrated 3D-printed structures was investigated, where it was observed that the BCP particle characteristics influenced the constructs’ water absorption, particle diffusion out of the matrix and degradability.


2019 ◽  
pp. 417-423
Author(s):  
A. Chiriac ◽  
A. Iencean ◽  
Georgiana Ion ◽  
G. Stan ◽  
S. Munteanu ◽  
...  

Medical implications of 3-dimensional (3D) printing technology have progressed with increasingly used especially in surgical fields. 3D printing techniques are practical and anatomically accurate methods of producing patient specific models for medical education, surgical planning, training and simulation, and implants production for the assessment and treatment of neurosurgical diseases. This article presents the main directions of 3D printing models application in neurosurgery.


2016 ◽  
Vol 31 (6) ◽  
pp. 799-806 ◽  
Author(s):  
Liciane Sabadin Bertol ◽  
Rodrigo Schabbach ◽  
Luís Alberto Loureiro dos Santos

The 3D printing process is highlighted nowadays as a possibility to generate individual parts with complex geometries. Moreover, the development of 3D printing hardware, software and parameters permits the manufacture of parts that can be not only used as prototypes, but are also made from materials that are suitable for implantation. In this way, this study investigates the process involved in the production of patient-specific craniofacial implants using calcium phosphate cement, and its dimensional accuracy. The implants were previously generated in a computer-aided design environment based on the patient’s tomographic data. The fabrication of the implants was carried out in a commercial 3D powder printing system using alfa-tricalcium phosphate powder and an aqueous solution of Na2HPO4 as a binder. The fit of the 3D printed implants was measured by three-dimensional laser scanning and by checking the right adjustment to the patient’s anatomical biomodel. The printed parts presented a good degree of fitting and accuracy.


2007 ◽  
Vol 18 (5) ◽  
pp. 909-916 ◽  
Author(s):  
Alaadien Khalyfa ◽  
Sebastian Vogt ◽  
Jürgen Weisser ◽  
Gabriele Grimm ◽  
Annett Rechtenbach ◽  
...  

2016 ◽  
Vol 5 (01) ◽  
pp. 4723 ◽  
Author(s):  
Bhusnure O. G.* ◽  
Gholve V. S. ◽  
Sugave B. K. ◽  
Dongre R. C. ◽  
Gore S. A. ◽  
...  

Many researchers have attempted to use computer-aided design (C.A.D) and computer-aided manufacturing (CAM) to realize a scaffold that provides a three-dimensional (3D) environment for regeneration of tissues and organs. As a result, several 3D printing technologies, including stereolithography, deposition modeling, inkjet-based printing and selective laser sintering have been developed. Because these 3D printing technologies use computers for design and fabrication, and they can fabricate 3D scaffolds as designed; as a consequence, they can be standardized. Growth of target tissues and organs requires the presence of appropriate growth factors, so fabrication of 3Dscaffold systems that release these biomolecules has been explored. A drug delivery system (D.D.S) that administrates a pharmaceutical compound to achieve a therapeutic effect in cells, animals and humans is a key technology that delivers biomolecules without side effects caused by excessive doses. 3D printing technologies and D. D. Ss have been assembled successfully, so new possibilities for improved tissue regeneration have been suggested. If the interaction between cells and scaffold system with biomolecules can be understood and controlled, and if an optimal 3D tissue regenerating environment is realized, 3D printing technologies will become an important aspect of tissue engineering research in the near future. 3D Printing promises to produce complex biomedical devices according to computer design using patient-specific anatomical data. Since its initial use as pre-surgical visualization models and tooling molds, 3D Printing has slowly evolved to create one-of-a-kind devices, implants, scaffolds for tissue engineering, diagnostic platforms, and drug delivery systems. Fuelled by the recent explosion in public interest and access to affordable printers, there is renewed interest to combine stem cells with custom 3D scaffolds for personalized regenerative medicine. Before 3D Printing can be used routinely for the regeneration of complex tissues (e.g. bone, cartilage, muscles, vessels, nerves in the craniomaxillofacial complex), and complex organs with intricate 3D microarchitecture (e.g. liver, lymphoid organs), several technological limitations must be addressed. Until recently, tablet designs had been restricted to the relatively small number of shapes that are easily achievable using traditional manufacturing methods. As 3D printing capabilities develop further, safety and regulatory concerns are addressed and the cost of the technology falls, contract manufacturers and pharmaceutical companies that experiment with these 3D printing innovations are likely to gain a competitive edge. This review compose the basics, types & techniques used, advantages and disadvantages of 3D printing


Author(s):  
Prabhash Dadhich ◽  
Pavan Kumar Srivas ◽  
Bodhisatwa Das ◽  
Pallabi Pal ◽  
Joy Dutta ◽  
...  

Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 3887
Author(s):  
Watcharapong Pudkon ◽  
Chavee Laomeephol ◽  
Siriporn Damrongsakkul ◽  
Sorada Kanokpanont ◽  
Juthamas Ratanavaraporn

Three-dimensional (3D) printing is regarded as a critical technology in material engineering for biomedical applications. From a previous report, silk fibroin (SF) has been used as a biomaterial for tissue engineering due to its biocompatibility, biodegradability, non-toxicity and robust mechanical properties which provide a potential as material for 3D-printing. In this study, SF-based hydrogels with different formulations and SF concentrations (1–3%wt) were prepared by natural gelation (SF/self-gelled), sodium tetradecyl sulfate-induced (SF/STS) and dimyristoyl glycerophosphorylglycerol-induced (SF/DMPG). From the results, 2%wt SF-based (2SF) hydrogels showed suitable properties for extrusion, such as storage modulus, shear-thinning behavior and degree of structure recovery. The 4-layer box structure of all 2SF-based hydrogel formulations could be printed without structural collapse. In addition, the mechanical stability of printed structures after three-step post-treatment was investigated. The printed structure of 2SF/STS and 2SF/DMPG hydrogels exhibited high stability with high degree of structure recovery as 70.4% and 53.7%, respectively, compared to 2SF/self-gelled construct as 38.9%. The 2SF/STS and 2SF/DMPG hydrogels showed a great potential to use as material for 3D-printing due to its rheological properties, printability and structure stability.


2021 ◽  
pp. 105566562110131
Author(s):  
Farrukh R. Virani ◽  
Evan C. Chua ◽  
Mary Roz Timbang ◽  
Tsung-yen Hsieh ◽  
Craig W. Senders

Objective: To determine the current applications of 3-dimensional (3D) printing in the care of patients with cleft lip and palate. We also reviewed 3D printing limitations, financial analysis, and future implications. Design: Retrospective systematic review. Methods: Preferred Reporting Items for Systematic Reviews and Meta-analyses guidelines were used by 3 independent reviewers. Articles were identified from Cochrane library, Ovid Medline, and Embase. Search terms included 3D printing, 3 dimensional printing, additive manufacturing, rapid prototyping, cleft lip, and cleft palate. Exclusion criteria included articles not in English, animal studies, reviews without original data, oral presentations, abstracts, opinion pieces, and articles without relevance to 3D printing or cleft lip and palate. Main Outcome Measures: Primary outcome measure was the purpose of 3D printing in the care of patients with cleft lip and palate. Secondary outcome measures were cost analysis and clinical outcomes. Results: Eight-four articles were identified, and 39 met inclusion/exclusion criteria. Eleven studies used 3D printing models for nasoalveolar molding. Patient-specific implants were developed via 3D printing in 6 articles. Surgical planning was conducted via 3D printing in 8 studies. Eight articles utilized 3D printing for anatomic models/educational purposes. 3-Dimensional printed models were used for surgical simulation/training in 6 articles. Bioprinting was utilized in 4 studies. Secondary outcome of cost was addressed in 8 articles. Conclusion: 3-Dimensional printing for the care of patients with cleft lip and palate has several applications. Potential advantages of utilizing this technology are demonstrated; however, literature is largely descriptive in nature with few clinical outcome measures. Future direction should be aimed at standardized reporting to include clinical outcomes, cost, material, printing method, and results.


Sign in / Sign up

Export Citation Format

Share Document