scholarly journals Eccentric Exercise: Adaptations and Applications for Health and Performance

2021 ◽  
Vol 6 (4) ◽  
pp. 96
Author(s):  
Michael O. Harris-Love ◽  
Jared M. Gollie ◽  
Justin W. L. Keogh

The goals of this narrative review are to provide a brief overview of the muscle and tendon adaptations to eccentric resistance exercise and address the applications of this form of training to aid rehabilitative interventions and enhance sports performance. This work is centered on the author contributions to the Special Issue entitled “Eccentric Exercise: Adaptations and Applications for Health and Performance”. The major themes from the contributing authors include the need to place greater attention on eccentric exercise mode selection based on training goals and individual fitness level, optimal approaches to implementing eccentric resistance exercise for therapeutic purposes, factors that affect the use of eccentric exercise across the lifespan, and general recommendations to integrate eccentric exercise in athletic training regimens. The authors propose that movement velocity and the absorption or recovery of kinetic energy are critical components of eccentric exercise programming. Regarding the therapeutic use of eccentric resistance training, patient-level factors regarding condition severity, fitness level, and stage of rehabilitation should govern the plan of care. In athletic populations, use of eccentric exercise may improve movement competency and promote improved safety and performance of sport-specific tasks. Eccentric resistance training is a viable option for youth, young adults, and older adults when the exercise prescription appropriately addresses program goals, exercise tolerability, and compliance. Despite the benefits of eccentric exercise, several key questions remain unanswered regarding its application underscoring the need for further investigation.

Author(s):  
Vilton Emanoel Lopes de Moura e Silva ◽  
Jason Michael Cholewa ◽  
Ralf Jäger ◽  
Nelo Eidy Zanchi ◽  
Marcelo Conrado de Freitas ◽  
...  

Abstract Background Acute capsaicinoid and capsinoid supplementation has endurance and resistance exercise benefits; however, if these short-term performance benefits translate into chronic benefits when combined with resistance training is currently unknown. This study investigated changes of chronic Capsiate supplementation on muscular adaptations, inflammatory response and performance in untrained men. Methods Twenty untrained men were randomized to ingest 12 mg Capsiate (CAP) or placebo in a parallel, double-blind design. Body composition and performance were measured at pre-training and after 6 weeks of resistance training. An acute resistance exercise session test was performed pre and post-intervention. Blood samples were collected at rest and post-resistance exercise to analyze Tumor necrosis factor- (TNF-), Soluble TNF- receptor (sTNF-r), Interleukin-6 (IL-6) and Interleukin-10 (IL-10). Results Exercise and CAP supplementation increased fat-free mass in comparison to baseline by 1.5 kg (P < 0.001), however, the majority of the increase (1.0 kg) resulted from an increase in total body water. The CAP change scores for fat-free mass were significantly greater in comparison to the placebo (CAP ∆%= 2.1 ± 1.8 %, PLA ∆%= 0.7 ± 1.3 %, P = 0.043) and there was a significant difference between groups in the bench press exercise (P = 0.034) with greater upper body strength change score for CAP (∆%= 13.4 ± 9.1 %) compared to placebo (∆%= 5.8 ± 5.2 %), P = 0.041. CAP had no effect on lower body strength and no supplementation interactions were observed for all cytokines in response to acute resistance exercise (P > 0.05). Conclusion Chronic Capsiate supplementation combined with resistance training during short period (6 weeks) increased fat-free mass and upper body strength but not inflammatory response and performance in young untrained men.


2011 ◽  
Vol 29A (Special-Issue) ◽  
pp. 15-19 ◽  
Author(s):  
Juan González-Badillo ◽  
Mário Marques ◽  
Luis Sánchez-Medina

The Importance of Movement Velocity as a Measure to Control Resistance Training IntensityConfiguration of the exercise stimulus in resitance training has been traditionally associated with a combination of the so-called ‘acute resistance exercise variables’ (exercise type and order, loading, number of repetitions and sets, rests duration and movement velocity). During typical resistance exercise in isoinertial conditions, and assuming every repetition is performed with maximal voluntary effort, velocity unintentionally declines as fatigue develops. However, few studies analyzing the response to different resitance training schemes have described changes in repetition velocity or power. It thus seems necessary to conduct more research using models of fatigue that analyze the reduction in mechanical variables such as force, velocity and power output over repeated dynamic contractions in actual training or competition settings. Thus, the aim of this paper was to discuss the importance of movement velocity concerning control training intensity.


2020 ◽  
Vol 7 (4) ◽  
Author(s):  
Mohammad Eslamdoust ◽  
Farshad Ghazalian ◽  
Mandana Gholami ◽  
Khosrow Ebrahim ◽  
Behzad Bazgir

Background: It has been assumed that during and after BFR exercises, many blood factors are activated and angiogenesis response is stimulated in the arteries. Objectives: Therefore, the current study aimed to determine the effect of two eccentric resistance training methods with and without blood flow restriction on serum IL6 and MMP9 levels in active young men. Methods: In this quasi-experimental study, 16 healthy men with a mean age of 27.8 ± 2.85 (years), the weight of 79.4 ± 12.4 (kg), and a body mass index of 25.5 ± 3.7 (kg/m2) were randomly assigned to either low-intensity eccentric group with BFR or the high-intensity eccentric without BFR. The high-intensity (70% - 80% maximum voluntary contraction MVC) eccentric exercise without BFR included 3 - 5 cycles of eccentric contraction of the quadriceps muscles, up to exhaustion, whereas low-intensity eccentric exercise executed similar exercise modality at intensity of 20% - 30% MVC with blood flow restriction up to exhaustion. Blood samples were taken from antecubital both before and after the exercise to measure serum IL6 and MMP9 values using the ELISA method. Data were analyzed using paired t-test and analysis of variance with repeated measure test in SPSS version 22. A P value of < 0.05 was defined as statistically significant. Results: High-intensity resistance per se and low-intensity resistance exercise with BFR similarly resulted in a non-significant reduction of IL-6 and elevated levels of MMP-9 serum levels in active young men. Conclusions: Overall, the results indicated that a low-intensity resistance exercise session with restricted blood flow and a high-intensity resistance exercise without blood flow restriction equally did not affect IL6 and MMP9 serum of active young men. Further studies are needed to clarify the exact exercise modality that sufficiently stimulates angiogenesis.


2020 ◽  
Vol 11 ◽  
Author(s):  
Bruno Fernández-Valdés ◽  
Jaime Sampaio ◽  
Juliana Exel ◽  
Jacob González ◽  
Julio Tous-Fajardo ◽  
...  

Author(s):  
Michael Rheese ◽  
Eric J. Drinkwater ◽  
Hans Leung ◽  
Justin W. Andrushko ◽  
Jacob Tober ◽  
...  

1997 ◽  
Vol 82 (3) ◽  
pp. 807-810 ◽  
Author(s):  
Arny A. Ferrando ◽  
Kevin D. Tipton ◽  
Marcas M. Bamman ◽  
Robert R. Wolfe

Ferrando, Arny A., Kevin D. Tipton, Marcas M. Bamman, and Robert R. Wolfe. Resistance exercise maintains skeletal muscle protein synthesis during bed rest. J. Appl. Physiol. 82(3): 807–810, 1997.—Spaceflight results in a loss of lean body mass and muscular strength. A ground-based model for microgravity, bed rest, results in a loss of lean body mass due to a decrease in muscle protein synthesis (MPS). Resistance training is suggested as a proposed countermeasure for spaceflight-induced atrophy because it is known to increase both MPS and skeletal muscle strength. We therefore hypothesized that scheduled resistance training throughout bed rest would ameliorate the decrease in MPS. Two groups of healthy volunteers were studied during 14 days of simulated microgravity. One group adhered to strict bed rest (BR; n = 5), whereas a second group engaged in leg resistance exercise every other day throughout bed rest (BREx; n = 6). MPS was determined directly by the incorporation of infusedl-[ ring-13C6]phenylalanine into vastus lateralis protein. After 14 days of bed rest, MPS in the BREx group did not change and was significantly greater than in the BR group. Thus moderate-resistance exercise can counteract the decrease in MPS during bed rest.


1999 ◽  
Vol 276 (1) ◽  
pp. E118-E124 ◽  
Author(s):  
S. M. Phillips ◽  
K. D. Tipton ◽  
A. A. Ferrando ◽  
R. R. Wolfe

We examined the effect of resistance training on the response of mixed muscle protein fractional synthesis (FSR) and breakdown rates (FBR) by use of primed constant infusions of [2H5]phenylalanine and [15N]phenylalanine, respectively, to an isolated bout of pleiometric resistance exercise. Trained subjects, who were performing regular resistance exercise (trained, T; n = 6), were compared with sedentary, untrained controls (untrained, UT; n = 6). The exercise test consisted of 10 sets (8 repetitions per set) of single-leg knee flexion (i.e., pleiometric muscle contraction during lowering) at 120% of the subjects’ predetermined single-leg 1 repetition maximum. Subjects exercised one leg while their contralateral leg acted as a nonexercised (resting) control. Exercise resulted in an increase, above resting, in mixed muscle FSR in both groups (UT: rest, 0.036 ± 0.002; exercise, 0.0802 ± 0.01; T: rest, 0.045 ± 0.004; exercise, 0.067 ± 0.01; all values in %/h; P< 0.01). In addition, exercise resulted in an increase in mixed muscle FBR of 37 ± 5% (rest, 0.076 ± 0.005; exercise, 0.105 ± 0.01; all values in %/h; P < 0.01) in the UT group but did not significantly affect FBR in the T group. The resulting muscle net balance (FSR − FBR) was negative throughout the protocol ( P < 0.05) but was increased in the exercised leg in both groups ( P < 0.05). We conclude that pleiometric muscle contractions induce an increase in mixed muscle protein synthetic rate within 4 h of completion of an exercise bout but that resistance training attenuates this increase. A single bout of pleiometric muscle contractions also increased the FBR of mixed muscle protein in UT but not in T subjects.


2006 ◽  
Vol 96 (6) ◽  
pp. 729-739 ◽  
Author(s):  
Antti A. Mero ◽  
Mika Vähälummukka ◽  
Juha J. Hulmi ◽  
Petteri Kallio ◽  
Atte von Wright

2006 ◽  
Vol 31 (5) ◽  
pp. 557-564 ◽  
Author(s):  
Joseph W. Hartman ◽  
Daniel R. Moore ◽  
Stuart M. Phillips

It is thought that resistance exercise results in an increased need for dietary protein; however, data also exists to support the opposite conclusion. The purpose of this study was to determine the impact of resistance exercise training on protein metabolism in novices with the hypothesis that resistance training would reduce protein turnover and improve whole-body protein retention. Healthy males (n = 8, 22 ± 1 y, BMI = 25.3 ± 1.8 kg·m–2) participated in a progressive whole-body split routine resistance-training program 5d/week for 12 weeks. Before (PRE) and after (POST) the training, oral [15N]-glycine ingestion was used to assess nitrogen flux (Q), protein synthesis (PS), protein breakdown (PB), and net protein balance (NPB = PS – PB). Macronutrient intake was controlled over a 5d period PRE and POST, while estimates of protein turnover and urinary nitrogen balance (Nbal = Nin – urine Nout) were conducted. Bench press and leg press increased 40% and 50%, respectively (p < 0.01). Fat- and bone-free mass (i.e., lean muscle mass) increased from PRE to POST (2.5 ± 0.8 kg, p < 0.05). Significant PRE to POST decreases (p <0.05) occurred in Q (0.9 ± 0.1 vs. 0.6 ± 0.1 g N·kg–1·d–1), PS (4.6 ± 0.7 vs. 2.9 ± 0.3 g·kg–1·d–1), and PB (4.3 ± 0.7 vs. 2.4 ± 0.2 g·kg–1·d–1). Significant training-induced increases in both NPB (PRE = 0.22 ± 0.13 g·kg–1·d–1; POST = 0.54 ± 0.08 g·kg–1·d–1) and urinary nitrogen balance (PRE = 2.8 ± 1.7 g N·d–1; POST = 6.5 ± 0.9 g N·d–1) were observed. A program of resistance training that induced significant muscle hypertrophy resulted in reductions of both whole-body PS and PB, but an improved NPB, which favoured the accretion of skeletal muscle protein. Urinary nitrogen balance increased after training. The reduction in PS and PB and a higher NPB in combination with an increased nitrogen balance after training suggest that dietary requirements for protein in novice resistance-trained athletes are not higher, but lower, after resistance training.


2013 ◽  
Vol 21 (4) ◽  
pp. 455-478 ◽  
Author(s):  
Daniel Santa Mina ◽  
Shabbir M.H. Alibhai ◽  
Andrew G. Matthew ◽  
Crissa L. Guglietti ◽  
Meysam Pirbaglou ◽  
...  

Androgen-deprivation therapy (ADT) for prostate cancer (PCa) has side effects that significantly impair health-related quality of life (HRQOL). Exercise ameliorates many side effects of ADT, but different modalities, particularly in the home-based setting, have not been well studied. In this study the authors randomly assigned 66 PCa survivors receiving ADT to 6 mo of home-based aerobic or resistance training. Psychosocial well-being and physical fitness were measured at baseline, 3 and 6 mo, and then 6 mo postintervention. Intention-to-treat analyses showed that fatigue and HRQOL were not significantly different between groups; however, in a per-protocol analysis the resistance-exercise training group demonstrated clinically significant improvements in HRQOL. Differential within-group effects on physical fitness were also observed at various time points. At all time points, the aerobic-training group engaged in significantly more physical activity than the resistance-training group, a finding that should be further examined given evidence-based guidelines for activity volume in cancer survivors.


Sign in / Sign up

Export Citation Format

Share Document