scholarly journals Identification of the Interface in a Binary Complex Plasma Using Machine Learning

2019 ◽  
Vol 5 (3) ◽  
pp. 36
Author(s):  
He Huang ◽  
Mierk Schwabe ◽  
Cheng-Ran Du

A binary complex plasma consists of two different types of dust particles in an ionized gas. Due to the spinodal decomposition and force imbalance, particles of different masses and diameters are typically phase separated, resulting in an interface. Both external excitation and internal instability may cause the interface to move with time. Support vector machine (SVM) is a supervised machine learning method that can be very effective for multi-class classification. We applied an SVM classification method based on image brightness to locate the interface in a binary complex plasma. Taking the scaled mean and variance as features, three areas, namely small particles, big particles and plasma without dust particles, were distinguished, leading to the identification of the interface between small and big particles.

2019 ◽  
Vol 23 (1) ◽  
pp. 12-21 ◽  
Author(s):  
Shikha N. Khera ◽  
Divya

Information technology (IT) industry in India has been facing a systemic issue of high attrition in the past few years, resulting in monetary and knowledge-based loses to the companies. The aim of this research is to develop a model to predict employee attrition and provide the organizations opportunities to address any issue and improve retention. Predictive model was developed based on supervised machine learning algorithm, support vector machine (SVM). Archival employee data (consisting of 22 input features) were collected from Human Resource databases of three IT companies in India, including their employment status (response variable) at the time of collection. Accuracy results from the confusion matrix for the SVM model showed that the model has an accuracy of 85 per cent. Also, results show that the model performs better in predicting who will leave the firm as compared to predicting who will not leave the company.


Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3827
Author(s):  
Gemma Urbanos ◽  
Alberto Martín ◽  
Guillermo Vázquez ◽  
Marta Villanueva ◽  
Manuel Villa ◽  
...  

Hyperspectral imaging techniques (HSI) do not require contact with patients and are non-ionizing as well as non-invasive. As a consequence, they have been extensively applied in the medical field. HSI is being combined with machine learning (ML) processes to obtain models to assist in diagnosis. In particular, the combination of these techniques has proven to be a reliable aid in the differentiation of healthy and tumor tissue during brain tumor surgery. ML algorithms such as support vector machine (SVM), random forest (RF) and convolutional neural networks (CNN) are used to make predictions and provide in-vivo visualizations that may assist neurosurgeons in being more precise, hence reducing damages to healthy tissue. In this work, thirteen in-vivo hyperspectral images from twelve different patients with high-grade gliomas (grade III and IV) have been selected to train SVM, RF and CNN classifiers. Five different classes have been defined during the experiments: healthy tissue, tumor, venous blood vessel, arterial blood vessel and dura mater. Overall accuracy (OACC) results vary from 60% to 95% depending on the training conditions. Finally, as far as the contribution of each band to the OACC is concerned, the results obtained in this work are 3.81 times greater than those reported in the literature.


2021 ◽  
Vol 11 (10) ◽  
pp. 4443
Author(s):  
Rokas Štrimaitis ◽  
Pavel Stefanovič ◽  
Simona Ramanauskaitė ◽  
Asta Slotkienė

Financial area analysis is not limited to enterprise performance analysis. It is worth analyzing as wide an area as possible to obtain the full impression of a specific enterprise. News website content is a datum source that expresses the public’s opinion on enterprise operations, status, etc. Therefore, it is worth analyzing the news portal article text. Sentiment analysis in English texts and financial area texts exist, and are accurate, the complexity of Lithuanian language is mostly concentrated on sentiment analysis of comment texts, and does not provide high accuracy. Therefore in this paper, the supervised machine learning model was implemented to assign sentiment analysis on financial context news, gathered from Lithuanian language websites. The analysis was made using three commonly used classification algorithms in the field of sentiment analysis. The hyperparameters optimization using the grid search was performed to discover the best parameters of each classifier. All experimental investigations were made using the newly collected datasets from four Lithuanian news websites. The results of the applied machine learning algorithms show that the highest accuracy is obtained using a non-balanced dataset, via the multinomial Naive Bayes algorithm (71.1%). The other algorithm accuracies were slightly lower: a long short-term memory (71%), and a support vector machine (70.4%).


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hyeon-Kyu Park ◽  
Jae-Hyeok Lee ◽  
Jehyun Lee ◽  
Sang-Koog Kim

AbstractThe macroscopic properties of permanent magnets and the resultant performance required for real implementations are determined by the magnets’ microscopic features. However, earlier micromagnetic simulations and experimental studies required relatively a lot of work to gain any complete and comprehensive understanding of the relationships between magnets’ macroscopic properties and their microstructures. Here, by means of supervised learning, we predict reliable values of coercivity (μ0Hc) and maximum magnetic energy product (BHmax) of granular NdFeB magnets according to their microstructural attributes (e.g. inter-grain decoupling, average grain size, and misalignment of easy axes) based on numerical datasets obtained from micromagnetic simulations. We conducted several tests of a variety of supervised machine learning (ML) models including kernel ridge regression (KRR), support vector regression (SVR), and artificial neural network (ANN) regression. The hyper-parameters of these models were optimized by a very fast simulated annealing (VFSA) algorithm with an adaptive cooling schedule. In our datasets of randomly generated 1,000 polycrystalline NdFeB cuboids with different microstructural attributes, all of the models yielded similar results in predicting both μ0Hc and BHmax. Furthermore, some outliers, which deteriorated the normality of residuals in the prediction of BHmax, were detected and further analyzed. Based on all of our results, we can conclude that our ML approach combined with micromagnetic simulations provides a robust framework for optimal design of microstructures for high-performance NdFeB magnets.


SPE Journal ◽  
2021 ◽  
pp. 1-13
Author(s):  
Utkarsh Sinha ◽  
Birol Dindoruk ◽  
Mohamed Soliman

Summary Minimum miscibility pressure (MMP) is one of the key design parameters for gas injection projects. It is a physical parameter that is a measure of local displacement efficiency while subject to some constraints due to its definition. Also, the MMP value is used to tune compositional models along with proper fluid description constrained with other available basic phase behavior data, such as bubble point pressure and volumetric properties. In general, carbon dioxide (CO2) and hydrocarbon gases are the most common gases used for (or screened for) gas injection processes, and because of recent focus, they are used to screen for the coupling of CO2-sequestration and CO2-enhanced oil recovery (EOR) projects. Because the CO2/oil phase behavior is quite different than the hydrocarbon gas/oil phase behavior, researchers developed specialized correlations for CO2 or CO2-rich streams. Therefore, there is a need for a tool with expanded range capabilities for the estimation of MMP for CO2 gas streams. The only known and widely accepted measurement technique for MMP that is coherent with its formal definition is the use of a slimtube apparatus. However, the use of slimtube restricts the amount of data available, even though there are other alternative techniques presented over the last three decades, which all have various limitations (Dindoruk et al. 2021). Due to some of the complexities highlighted in Dindoruk et al. (2021) and time and resource requirements, there have been a number of correlations developed in the literature using mostly classical regression techniques with relatively sparse data using various combinations of limited input data (Cronquist 1978; Lee 1979; Yellig and Metcalfe 1980; Alston et al. 1985; Glaso 1985; Jaubert et al. 1998; Emera and Sarma 2005; Yuan et al. 2005; Ahmadi et al. 2010; Ahmadi and Johns 2011). In this paper, we present two separate approaches for the calculation of the MMP of an oil for CO2 injection: analytical correlation in which the correlation coefficients were tuned using linear support vector machines (SVMs) (Press et al. 2007; MathWorks 2020; RDocumentation 2020b; Cortes and Vapnik 1995) and using a hybrid method (i.e., superlearner model), which consists of the combination of random forest (RF) regression (Breiman 2001) and the proposed analytical correlation. Both models take the compositional analysis of oils up to heptane plus fraction, molecular weight of oil, and the reservoir temperature as input parameters. Based on statistical and data analysis techniques in combination with the help of corresponding crossplots, we showed that the performance of the final proposed method (hybrid method) is superior to all the leading correlations (Cronquist 1978; Lee 1979; Yellig and Metcalfe 1980; Alston et al. 1985; Glaso 1985; Emera and Sarma 2005; Yuan et al. 2005) and supervised machine-learning (Metcalfe 1982) methods considered in the literature (Altman 1992; Chambers and Hastie 1992; Chapelle and Vapnik 2000; Breiman 2001; Press et al. 2007; MathWorks 2020). The proposed model works for the widest spectrum of MMPs from 1,000 to 4,900 psia, which covers the entire range of oils within the scope of CO2 EOR based on the widely used screening criteria (Taber et al. 1997a, 1997b).


Author(s):  
V Umarani ◽  
A Julian ◽  
J Deepa

Sentiment analysis has gained a lot of attention from researchers in the last year because it has been widely applied to a variety of application domains such as business, government, education, sports, tourism, biomedicine, and telecommunication services. Sentiment analysis is an automated computational method for studying or evaluating sentiments, feelings, and emotions expressed as comments, feedbacks, or critiques. The sentiment analysis process can be automated using machine learning techniques, which analyses text patterns faster. The supervised machine learning technique is the most used mechanism for sentiment analysis. The proposed work discusses the flow of sentiment analysis process and investigates the common supervised machine learning techniques such as multinomial naive bayes, Bernoulli naive bayes, logistic regression, support vector machine, random forest, K-nearest neighbor, decision tree, and deep learning techniques such as Long Short-Term Memory and Convolution Neural Network. The work examines such learning methods using standard data set and the experimental results of sentiment analysis demonstrate the performance of various classifiers taken in terms of the precision, recall, F1-score, RoC-Curve, accuracy, running time and k fold cross validation and helps in appreciating the novelty of the several deep learning techniques and also giving the user an overview of choosing the right technique for their application.


2019 ◽  
Vol 16 (2) ◽  
pp. 5-16
Author(s):  
Amit Singh ◽  
Ivan Li ◽  
Otto Hannuksela ◽  
Tjonnie Li ◽  
Kyungmin Kim

Gravitational waves are theorized to be gravitationally lensed when they propagate near massive objects. Such lensing effects cause potentially detectable repeated gravitational wave patterns in ground- and space-based gravitational wave detectors. These effects are difficult to discriminate when the lens is small and the repeated patterns superpose. Traditionally, matched filtering techniques are used to identify gravitational-wave signals, but we instead aim to utilize machine learning techniques to achieve this. In this work, we implement supervised machine learning classifiers (support vector machine, random forest, multi-layer perceptron) to discriminate such lensing patterns in gravitational wave data. We train classifiers with spectrograms of both lensed and unlensed waves using both point-mass and singular isothermal sphere lens models. As the result, classifiers return F1 scores ranging from 0:852 to 0:996, with precisions from 0:917 to 0:992 and recalls ranging from 0:796 to 1:000 depending on the type of classifier and lensing model used. This supports the idea that machine learning classifiers are able to correctly determine lensed gravitational wave signals. This also suggests that in the future, machine learning classifiers may be used as a possible alternative to identify lensed gravitational wave events and to allow us to study gravitational wave sources and massive astronomical objects through further analysis. KEYWORDS: Gravitational Waves; Gravitational Lensing; Geometrical Optics; Machine Learning; Classification; Support Vector Machine; Random Tree Forest; Multi-layer Perceptron


2021 ◽  
Vol 297 ◽  
pp. 01073
Author(s):  
Sabyasachi Pramanik ◽  
K. Martin Sagayam ◽  
Om Prakash Jena

Cancer has been described as a diverse illness with several distinct subtypes that may occur simultaneously. As a result, early detection and forecast of cancer types have graced essentially in cancer fact-finding methods since they may help to improve the clinical treatment of cancer survivors. The significance of categorizing cancer suffers into higher or lower-threat categories has prompted numerous fact-finding associates from the bioscience and genomics field to investigate the utilization of machine learning (ML) algorithms in cancer diagnosis and treatment. Because of this, these methods have been used with the goal of simulating the development and treatment of malignant diseases in humans. Furthermore, the capacity of machine learning techniques to identify important characteristics from complicated datasets demonstrates the significance of these technologies. These technologies include Bayesian networks and artificial neural networks, along with a number of other approaches. Decision Trees and Support Vector Machines which have already been extensively used in cancer research for the creation of predictive models, also lead to accurate decision making. The application of machine learning techniques may undoubtedly enhance our knowledge of cancer development; nevertheless, a sufficient degree of validation is required before these approaches can be considered for use in daily clinical practice. An overview of current machine learning approaches utilized in the simulation of cancer development is presented in this paper. All of the supervised machine learning approaches described here, along with a variety of input characteristics and data samples, are used to build the prediction models. In light of the increasing trend towards the use of machine learning methods in biomedical research, we offer the most current papers that have used these approaches to predict risk of cancer or patient outcomes in order to better understand cancer.


2020 ◽  
Author(s):  
John T. Halloran ◽  
Gregor Urban ◽  
David Rocke ◽  
Pierre Baldi

AbstractSemi-supervised machine learning post-processors critically improve peptide identification of shot-gun proteomics data. Such post-processors accept the peptide-spectrum matches (PSMs) and feature vectors resulting from a database search, train a machine learning classifier, and recalibrate PSMs using the trained parameters, often yielding significantly more identified peptides across q-value thresholds. However, current state-of-the-art post-processors rely on shallow machine learning methods, such as support vector machines. In contrast, the powerful training capabilities of deep learning models have displayed superior performance to shallow models in an ever-growing number of other fields. In this work, we show that deep models significantly improve the recalibration of PSMs compared to the most accurate and widely-used post-processors, such as Percolator and PeptideProphet. Furthermore, we show that deep learning is able to adaptively analyze complex datasets and features for more accurate universal post-processing, leading to both improved Prosit analysis and markedly better recalibration of recently developed database-search functions.


2020 ◽  
Author(s):  
Castro Mayleen Dorcas Bondoc ◽  
Tumibay Gilbert Malawit

Today many schools, universities and institutions recognize the necessity and importance of using Learning Management Systems (LMS) as part of their educational services. This research work has applied LMS in the teaching and learning process of Bulacan State University (BulSU) Graduate School (GS) Program that enhances the face-to-face instruction with online components. The researchers uses an LMS that provides educators a platform that can motivate and engage students to new educational environment through manage online classes. The LMS allows educators to distribute information, manage learning materials, assignments, quizzes, and communications. Aside from the basic functions of the LMS, the researchers uses Machine Learning (ML) Algorithms applying Support Vector Machine (SVM) that will classify and identify the best related videos per topic. SVM is a supervised machine learning algorithm that analyzes data for classification and regression analysis by Maity [1]. The results of this study showed that integration of video tutorials in LMS can significantly contribute knowledge and skills in the learning process of the students.


Sign in / Sign up

Export Citation Format

Share Document