scholarly journals Study on Data Partition for Delimitation of Masses in Mammography

2021 ◽  
Vol 7 (9) ◽  
pp. 174
Author(s):  
Luís Viegas ◽  
Inês Domingues ◽  
Mateus Mendes

Mammography is the primary medical imaging method used for routine screening and early detection of breast cancer in women. However, the process of manually inspecting, detecting, and delimiting the tumoral massess in 2D images is a very time-consuming task, subject to human errors due to fatigue. Therefore, integrated computer-aided detection systems have been proposed, based on modern computer vision and machine learning methods. In the present work, mammogram images from the publicly available Inbreast dataset are first converted to pseudo-color and then used to train and test a Mask R-CNN deep neural network. The most common approach is to start with a dataset and split the images into train and test set randomly. However, since there are often two or more images of the same case in the dataset, the way the dataset is split may have an impact on the results. Our experiments show that random partition of the data can produce unreliable training, so the dataset must be split using case-wise partition for more stable results. In experimental results, the method achieves an average true positive rate of 0.936 with 0.063 standard deviation using random partition and 0.908 with 0.002 standard deviation using case-wise partition, showing that case-wise partition must be used for more reliable results.

Electronics ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 181
Author(s):  
Yajie Song ◽  
Bing Bu ◽  
Li Zhu

Security is crucial in cyber-physical systems (CPS). As a typical CPS, the communication-based train control (CBTC) system is facing increasingly serious cyber-attacks. Intrusion detection systems (IDSs) are vital to protect the system against cyber-attacks. The traditional IDS cannot distinguish between cyber-attacks and system faults. Furthermore, the design of the traditional IDS does not take the principles of CBTC systems into consideration. When deployed, it cannot effectively detect cyber-attacks against CBTC systems. In this paper, we propose a novel intrusion detection method that considers both the status of the networks and those of the equipment to identify if the abnormality is caused by cyber-attacks or by system faults. The proposed method is verified on a hardware-in-the-loop simulation platform of CBTC systems. Simulation results indicate that the proposed method has achieved 97.64% true positive rate, which can significantly improve the security protection level of CBTC systems.


2019 ◽  
Vol 14 (3) ◽  
pp. 628-661 ◽  
Author(s):  
Bikash Kanti Sarkar ◽  
Shib Sankar Sana

Purpose The purpose of this study is to alleviate the specified issues to a great extent. To promote patients’ health via early prediction of diseases, knowledge extraction using data mining approaches shows an integral part of e-health system. However, medical databases are highly imbalanced, voluminous, conflicting and complex in nature, and these can lead to erroneous diagnosis of diseases (i.e. detecting class-values of diseases). In literature, numerous standard disease decision support system (DDSS) have been proposed, but most of them are disease specific. Also, they usually suffer from several drawbacks like lack of understandability, incapability of operating rare cases, inefficiency in making quick and correct decision, etc. Design/methodology/approach Addressing the limitations of the existing systems, the present research introduces a two-step framework for designing a DDSS, in which the first step (data-level optimization) deals in identifying an optimal data-partition (Popt) for each disease data set and then the best training set for Popt in parallel manner. On the other hand, the second step explores a generic predictive model (integrating C4.5 and PRISM learners) over the discovered information for effective diagnosis of disease. The designed model is a generic one (i.e. not disease specific). Findings The empirical results (in terms of top three measures, namely, accuracy, true positive rate and false positive rate) obtained over 14 benchmark medical data sets (collected from https://archive.ics.uci.edu/ml) demonstrate that the hybrid model outperforms the base learners in almost all cases for initial diagnosis of the diseases. After all, the proposed DDSS may work as an e-doctor to detect diseases. Originality/value The model designed in this study is original, and the necessary parallelized methods are implemented in C on Cluster HPC machine (FUJITSU) with total 256 cores (under one Master node).


Electronics ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1894
Author(s):  
Chun Guo ◽  
Zihua Song ◽  
Yuan Ping ◽  
Guowei Shen ◽  
Yuhei Cui ◽  
...  

Remote Access Trojan (RAT) is one of the most terrible security threats that organizations face today. At present, two major RAT detection methods are host-based and network-based detection methods. To complement one another’s strengths, this article proposes a phased RATs detection method by combining double-side features (PRATD). In PRATD, both host-side and network-side features are combined to build detection models, which is conducive to distinguishing the RATs from benign programs because that the RATs not only generate traffic on the network but also leave traces on the host at run time. Besides, PRATD trains two different detection models for the two runtime states of RATs for improving the True Positive Rate (TPR). The experiments on the network and host records collected from five kinds of benign programs and 20 famous RATs show that PRATD can effectively detect RATs, it can achieve a TPR as high as 93.609% with a False Positive Rate (FPR) as low as 0.407% for the known RATs, a TPR 81.928% and FPR 0.185% for the unknown RATs, which suggests it is a competitive candidate for RAT detection.


2021 ◽  
pp. 103985622110286
Author(s):  
Tracey Wade ◽  
Jamie-Lee Pennesi ◽  
Yuan Zhou

Objective: Currently eligibility for expanded Medicare items for eating disorders (excluding anorexia nervosa) require a score ⩾ 3 on the 22-item Eating Disorder Examination-Questionnaire (EDE-Q). We compared these EDE-Q “cases” with continuous scores on a validated 7-item version of the EDE-Q (EDE-Q7) to identify an EDE-Q7 cut-off commensurate to 3 on the EDE-Q. Methods: We utilised EDE-Q scores of female university students ( N = 337) at risk of developing an eating disorder. We used a receiver operating characteristic (ROC) curve to assess the relationship between the true-positive rate (sensitivity) and the false-positive rate (1-specificity) of cases ⩾ 3. Results: The area under the curve showed outstanding discrimination of 0.94 (95% CI: .92–.97). We examined two specific cut-off points on the EDE-Q7, which included 100% and 87% of true cases, respectively. Conclusion: Given the EDE-Q cut-off for Medicare is used in conjunction with other criteria, we suggest using the more permissive EDE-Q7 cut-off (⩾2.5) to replace use of the EDE-Q cut-off (⩾3) in eligibility assessments.


2021 ◽  
Vol 10 (7) ◽  
pp. 1543
Author(s):  
Morwenn Le Boulc’h ◽  
Julia Gilhodes ◽  
Zara Steinmeyer ◽  
Sébastien Molière ◽  
Carole Mathelin

Background: This systematic review aimed at comparing performances of ultrasonography (US), magnetic resonance imaging (MRI), and fluorodeoxyglucose positron emission tomography (PET) for axillary staging, with a focus on micro- or micrometastases. Methods: A search for relevant studies published between January 2002 and March 2018 was conducted in MEDLINE database. Study quality was assessed using the QUality Assessment of Diagnostic Accuracy Studies checklist. Sensitivity and specificity were meta-analyzed using a bivariate random effects approach; Results: Across 62 studies (n = 10,374 patients), sensitivity and specificity to detect metastatic ALN were, respectively, 51% (95% CI: 43–59%) and 100% (95% CI: 99–100%) for US, 83% (95% CI: 72–91%) and 85% (95% CI: 72–92%) for MRI, and 49% (95% CI: 39–59%) and 94% (95% CI: 91–96%) for PET. Interestingly, US detects a significant proportion of macrometastases (false negative rate was 0.28 (0.22, 0.34) for more than 2 metastatic ALN and 0.96 (0.86, 0.99) for micrometastases). In contrast, PET tends to detect a significant proportion of micrometastases (true positive rate = 0.41 (0.29, 0.54)). Data are not available for MRI. Conclusions: In comparison with MRI and PET Fluorodeoxyglucose (FDG), US is an effective technique for axillary triage, especially to detect high metastatic burden without upstaging majority of micrometastases.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Katarzyna Bozek ◽  
Laetitia Hebert ◽  
Yoann Portugal ◽  
Greg J. Stephens

AbstractFrom cells in tissue, to bird flocks, to human crowds, living systems display a stunning variety of collective behaviors. Yet quantifying such phenomena first requires tracking a significant fraction of the group members in natural conditions, a substantial and ongoing challenge. We present a comprehensive, computational method for tracking an entire colony of the honey bee Apis mellifera using high-resolution video on a natural honeycomb background. We adapt a convolutional neural network (CNN) segmentation architecture to automatically identify bee and brood cell positions, body orientations and within-cell states. We achieve high accuracy (~10% body width error in position, ~10° error in orientation, and true positive rate > 90%) and demonstrate months-long monitoring of sociometric colony fluctuations. These fluctuations include ~24 h cycles in the counted detections, negative correlation between bee and brood, and nightly enhancement of bees inside comb cells. We combine detected positions with visual features of organism-centered images to track individuals over time and through challenging occluding events, recovering ~79% of bee trajectories from five observation hives over 5 min timespans. The trajectories reveal important individual behaviors, including waggle dances and crawling inside comb cells. Our results provide opportunities for the quantitative study of collective bee behavior and for advancing tracking techniques of crowded systems.


Sensors ◽  
2020 ◽  
Vol 21 (1) ◽  
pp. 166
Author(s):  
Jakub T. Wilk ◽  
Beata Bąk ◽  
Piotr Artiemjew ◽  
Jerzy Wilde ◽  
Maciej Siuda

Honeybee workers have a specific smell depending on the age of workers and the biological status of the colony. Laboratory tests were carried out at the Department of Apiculture at UWM Olsztyn, using gas sensors installed in two twin prototype multi-sensor detectors. The study aimed to compare the responses of sensors to the odor of old worker bees (3–6 weeks old), young ones (0–1 days old), and those from long-term queenless colonies. From the experimental colonies, 10 samples of 100 workers were taken for each group and placed successively in the research chambers for the duration of the study. Old workers came from outer nest combs, young workers from hatching out brood in an incubator, and laying worker bees from long-term queenless colonies from brood combs (with laying worker bee’s eggs, humped brood, and drones). Each probe was measured for 10 min, and then immediately for another 10 min ambient air was given to regenerate sensors. The results were analyzed using 10 different classifiers. Research has shown that the devices can distinguish between the biological status of bees. The effectiveness of distinguishing between classes, determined by the parameters of accuracy balanced and true positive rate, of 0.763 and 0.742 in the case of the best euclidean.1nn classifier, may be satisfactory in the context of practical beekeeping. Depending on the environment accompanying the tested objects (a type of insert in the test chamber), the introduction of other classifiers as well as baseline correction methods may be considered, while the selection of the appropriate classifier for the task may be of great importance for the effectiveness of the classification.


2016 ◽  
Vol 24 (2) ◽  
pp. 263-272 ◽  
Author(s):  
Kosuke Imai ◽  
Kabir Khanna

In both political behavior research and voting rights litigation, turnout and vote choice for different racial groups are often inferred using aggregate election results and racial composition. Over the past several decades, many statistical methods have been proposed to address this ecological inference problem. We propose an alternative method to reduce aggregation bias by predicting individual-level ethnicity from voter registration records. Building on the existing methodological literature, we use Bayes's rule to combine the Census Bureau's Surname List with various information from geocoded voter registration records. We evaluate the performance of the proposed methodology using approximately nine million voter registration records from Florida, where self-reported ethnicity is available. We find that it is possible to reduce the false positive rate among Black and Latino voters to 6% and 3%, respectively, while maintaining the true positive rate above 80%. Moreover, we use our predictions to estimate turnout by race and find that our estimates yields substantially less amounts of bias and root mean squared error than standard ecological inference estimates. We provide open-source software to implement the proposed methodology.


Sensors ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 572
Author(s):  
Mads Jochumsen ◽  
Taha Al Muhammadee Janjua ◽  
Juan Carlos Arceo ◽  
Jimmy Lauber ◽  
Emilie Simoneau Buessinger ◽  
...  

Brain-computer interfaces (BCIs) have been proven to be useful for stroke rehabilitation, but there are a number of factors that impede the use of this technology in rehabilitation clinics and in home-use, the major factors including the usability and costs of the BCI system. The aims of this study were to develop a cheap 3D-printed wrist exoskeleton that can be controlled by a cheap open source BCI (OpenViBE), and to determine if training with such a setup could induce neural plasticity. Eleven healthy volunteers imagined wrist extensions, which were detected from single-trial electroencephalography (EEG), and in response to this, the wrist exoskeleton replicated the intended movement. Motor-evoked potentials (MEPs) elicited using transcranial magnetic stimulation were measured before, immediately after, and 30 min after BCI training with the exoskeleton. The BCI system had a true positive rate of 86 ± 12% with 1.20 ± 0.57 false detections per minute. Compared to the measurement before the BCI training, the MEPs increased by 35 ± 60% immediately after and 67 ± 60% 30 min after the BCI training. There was no association between the BCI performance and the induction of plasticity. In conclusion, it is possible to detect imaginary movements using an open-source BCI setup and control a cheap 3D-printed exoskeleton that when combined with the BCI can induce neural plasticity. These findings may promote the availability of BCI technology for rehabilitation clinics and home-use. However, the usability must be improved, and further tests are needed with stroke patients.


2012 ◽  
Vol 195-196 ◽  
pp. 402-406
Author(s):  
Xue Qin Chen ◽  
Rui Ping Wang

Classify the electrocardiogram (ECG) into different pathophysiological categories is a complex pattern recognition task which has been tried in lots of methods. This paper will discuss a method of principal component analysis (PCA) in exacting the heartbeat features, and a new method of classification that is to calculate the error between the testing heartbeat and reconstructed heartbeat. Training and testing heartbeat is taken from the MIT-BIH Arrhythmia Database, in which 8 types of arrhythmia signals are selected in this paper. The true positive rate (TPR) is 83%.


Sign in / Sign up

Export Citation Format

Share Document