scholarly journals A 1.02 μW Autarkic Threshold-Based Sensing and Energy Harvesting Interface Using a Single Piezoelectric Element

2021 ◽  
Vol 11 (2) ◽  
pp. 27
Author(s):  
Zoi Agorastou ◽  
Vasileios Kalenteridis ◽  
Stylianos Siskos

A self-powered piezoelectric sensor interface employing part of the signal that is not intended for measurement to sustain its autonomous operation was designed using XH018 (180 nm) technology. The aim of the proposed circuit, besides the energy self-sufficiency of the sensor, is to provide an interface that eliminates the effect of the harvesting process on the piezoelectric output signal which contains context data. This is achieved by isolating part of the signal that is desirable for sensing from the harvesting process so that the former is not affected or distorted by the latter. Moreover, the circuit manages to self-start its operation, so no additional battery or pre-charged capacitor is needed. The circuit achieves a very low power consumption of 1.02 μW. As a proof of concept, the proposed interfacing circuit is implemented in order to be potentially used for weigh-in-motion applications.

Author(s):  
Qibo Mao ◽  
Yuande Wang ◽  
Shizuo Huang

In this study, a new methodology is presented to detect the sensor fault for piezoelectric array based on the filtered frequency response function (FRF) shapes. The proposed method does not require prior knowledge about healthy piezoelectric array. First, the imaginary parts of FRFs from the piezoelectric array during vibration are measured and normalized to obtain the FRF shapes in different frequencies. Then the irregularities in these FRF shapes are extracted by using high-pass filter with properly chosen cut-off frequency. These abnormal irregularities on the filtered FRF shape curves indicate the location of the faulty sensor, due to the irregularity of FRF shapes introduced by the faulty piezoelectric element. The proposed sensor fault method is experimentally demonstrated on a clamped-clamped steel beam mounted with piezoelectric buzzer array. Two common piezoelectric sensor fault types including sensor breakage and debonding are evaluated. The experimental results indicate that the proposed method has great potential in the detection of the sensor fault for piezoelectric array as it is simple and does not require the FRF data of the healthy sensor array as a baseline.


2021 ◽  
Vol 9 (1) ◽  
pp. 19
Author(s):  
Zdenek Slanina ◽  
Wojciech Walendziuk ◽  
Lukas Prokop ◽  
Martin Kosinka

This study focused on the use of technical solutions for automated parking for urban needs with regard to energetic self-sufficiency, balancing the price and usability of the building area for the optimal number of parking spaces and the goal of the maximum use of the building surface for green areas that provide not only oxygen production but also filtration of dust particles and appropriate water management.


2018 ◽  
Vol 29 (10) ◽  
pp. 2267-2276
Author(s):  
Niell Elvin ◽  
Alex Elvin

Significant portions of the earth’s land mass undergo annual freeze–thaw cycles, and although water is abundant and practically a free resource, the possibility of using the water–ice phase transition for smart material applications and actuators for machines has not been studied. This article details some of the characteristics of a freeze–thaw actuator, compares it to other smart material actuators, and presents three experimental demonstrations of its potential for engineering applications. The first application is the conversion of the freeze cycle into electrical energy by coupling the freeze–thaw actuator with a bistable piezoelectric element. The second application demonstrates the ability to store energy mechanically and keep a count of multiple freeze–thaw cycles. This stored energy can then be released after a preset number of freeze–thaw cycles. The third application demonstrates a self-powered mechanism that is capable of moving itself one body length per freeze–thaw cycle.


Author(s):  
Saman Farhangdoust ◽  
Gary Georgeson ◽  
Jeong-Beom Ihn ◽  
Armin Mehrabi

Abstract These days, piezoelectric energy harvesting (PEH) is introduced as one of the clean and renewable energy sources for powering the self-powered sensors utilized for wireless condition monitoring of structures. However, low efficiency is the biggest drawback of the PEHs. This paper introduces an innovative embedded metamaterial subframe (MetaSub) patch as a practical solution to address the low throughput limitation of conventional PEHs whose host structure has already been constructed or installed. To evaluate the performance of the embedded MetaSub patch (EMSP), a cantilever beam is considered as the host structure in this study. The EMSP transfers the auxetic behavior to the piezoelectric element (PZT) wherever substituting a regular beam with an auxetic beam is either impracticable or suboptimal. The concept of the EMSP is numerically validated, and the COMSOL Multiphysics software was employed to investigate its performance when a cantilever beam is subjected to different amplitude and frequency. The FEM results demonstrate that the harvesting power in cases that use the EMSP can be amplified up to 5.5 times compared to a piezoelectric cantilever energy harvester without patch. This paper opens up a great potential of using EMSP for different types of energy harvesting systems in biomedical, acoustics, civil, electrical, aerospace, and mechanical engineering applications.


Author(s):  
Lianhe Guo ◽  
Yumei Tang ◽  
Jingyan Yu ◽  
Jing Li ◽  
Xuemin Chen ◽  
...  

2013 ◽  
Vol 432 ◽  
pp. 275-280 ◽  
Author(s):  
Dong Ho Ha ◽  
Jinkyo F. Choo ◽  
Chang Hyung Lee ◽  
Won Seo Jang ◽  
Nam Seo Goo

A multi-functional bridge bearing with built-in piezocomposite electricity generating element (PCGE) is being developed by our research team to respond to the growing demand of self-powered sensing devices for the monitoring of bridges by harvesting the energy produced by the traffic-induced vibrations. For the intended application, a multilayered piezoelectric PCGE structure composed of layers of piezoceramic, glass/epoxy, and carbon/epoxy, has been developed to improve the durability, output voltage and power of the piezoceramic. The output voltage of this PCGE can be used for real-time traffic monitoring like in bridge-weigh-in-motion systems and can eventually be exploited to generate the electricity needed for the lighting and functioning of other embedded sensors. This paper presents the results of the dynamic loading tests conducted on a prototype of the proposed multi-functional bridge bearing to enhance its design details and verify the accuracy of the measurement. The results show that the bearing provides reliable measurement for traffic monitoring and enable to conceive details for the improvement of the output voltage of the PCGE. Since bridge bearings, as indispensable devices transferring the loads and movements from the deck to the substructure and foundations of the bridge, are continuously subjected to traffic loads, the proposed bridge bearing appears to be a natural and economic solution that can be applied to existing or newly built bridges without modification of the conventional design while providing additional and valuable functions for the maintenance of the structure.


Machines ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 82
Author(s):  
Stefano Rodinò ◽  
Elio Matteo Curcio ◽  
Antonio di Bella ◽  
Mattia Persampieri ◽  
Michele Funaro ◽  
...  

This paper outlines the design process for achieving a novel four-legged robot for exploration and rescue tasks. This application is also intended as an educational mean for masters’ students aiming at gaining skills in designing and operating a complex mechatronic system. The design process starts with an analysis of the desired locomotion and definition of the main requirements and constraints. Then, the paper focuses on the key design challenges, including analytical/numerical modeling and simulations of kinematic and dynamic performances. Specific attention is addressed to the manufacturing of a proof-of-concept prototype, including mechanical and control hardware, as well as the development of the needed software for an autonomous operation. Preliminary tests were carried out, to validate the main features required by the final prototype, to prove its feasibility and user-friendliness, as well as the effectiveness of this complex mechatronic design task for successfully engaging students towards learning complex theoretical, numerical, and practical skills.


Sign in / Sign up

Export Citation Format

Share Document