scholarly journals Wave and Tidal Controls on Embayment Circulation and Headland Bypassing for an Exposed, Macrotidal Site

2018 ◽  
Vol 6 (3) ◽  
pp. 94 ◽  
Author(s):  
R. McCarroll ◽  
Gerd Masselink ◽  
Nieves Valiente ◽  
Tim Scott ◽  
Erin King ◽  
...  

Headland bypassing is the transport of sediment around rocky headlands by wave and tidal action, associated with high-energy conditions and embayment circulation (e.g., mega-rips). Bypassing may be a key component in the sediment budget of many coastal cells, the quantification of which is required to predict the coastal response to extreme events and future coastal change. Waves, currents, and water levels were measured off the headland of a sandy, exposed, and macrotidal beach in 18-m and 26-m depths for 2 months. The observations were used to validate a Delft3D morphodynamic model, which was subsequently run for a wide range of scenarios. Three modes of bypassing were determined: (i) tidally-dominated control during low–moderate wave conditions [flux O (0–102 m3 day−1)]; (ii) combined tidal- and embayment circulation controls during moderate–high waves [O (103 m3 day−1)]; and (iii) multi-embayment circulation control during extreme waves [O (104 m3 day−1)]. A site-specific bypass parameter is introduced, which accurately (R2 = 0.95) matches the modelled bypass rates. A 5-year hindcast predicts bypassing is an order of magnitude less than observed cross-shore fluxes during extreme events, suggesting that bypassing at this site is insignificant at annual timescales. This work serves a starting point to generalise the prediction of headland bypassing.

2013 ◽  
Vol 740-742 ◽  
pp. 625-628
Author(s):  
N. Chuchvaga ◽  
E. Bogdanova ◽  
A. Strelchuk ◽  
Evgenia V. Kalinina ◽  
D.B. Shustov ◽  
...  

A comparative research of the cathodoluminescence and electrical characteristics of the samples 4H-SiC irradiated with high energy Xe ions (167 MeV) in wide range fluencies 4x109 –1x1011 cm-2 at temperatures 250C and 5000C are presented. After irradiation these samples were thermal annealed at 5000C for 30 min. Far-action effect at a depth of more than one order of magnitude of stopping distance was observed under Xe ions irradiation in 4H-SiC. An increase of the ion Xe fluencies increased the concentration of radiation-induced defects that resulted in rise of the compensation effect of conductivity in samples. Irradiation of 4H-SiC by Xe ions at 5000C was accompanied with "dynamic annealing" some low-temperature radiation-induced defects, which led to a partial recovery of the electrical characteristics of devices. The thermal annealing of irradiated samples led to additional partial annealing of radiation defects, which increases the radiation resource of devices based on 4H-SiC.


1995 ◽  
Vol 04 (03) ◽  
pp. 687-700
Author(s):  
H. R. REISS

The ability of the SFA (strong-field approximation) to predict the ionization of atoms at all frequencies is explored at low frequency by comparison with experiment. Excellent agreement is found over a very wide range of high intensities. At high frequency, where no precision strong-field experiments are available, a comparison is made between predictions of the SFA and a high-frequency theory due to Gavrila. Agreement in transition rates is very good. The disagreement in the assignment of energy conditions at high frequencies is explained as a difference in interpretation brought about by the gauge transformation employed by Gavrila. An examination of semiclassical path behavior of a photoelectron after ionization gives insight on the lower limits of intensity for which the SFA is applicable, and makes transparent the meaning of a recently applied Coulomb correction to the SFA for circularly polarized light. A related examination for linearly polarized light gives an effective high energy limit for intense-field photoelectron spectra.


2006 ◽  
Vol 57 (5) ◽  
pp. 519 ◽  
Author(s):  
S. A. Stephens ◽  
N. Broekhuizen ◽  
A. B. Macdiarmid ◽  
C. J. Lundquist ◽  
L. McLeod ◽  
...  

The dispersal and transport of larval New Zealand abalone Haliotis iris was simulated using coupled two-dimensional hydrodynamic and Lagrangian particle-trajectory models. The aim was to estimate pelagic larval dispersal potential along the open coast, as a starting point from which basic management questions can be made for this recreationally and commercially important species. Larval dispersal was simulated from representative spawning sites under a range of representative hydrodynamic conditions, including wave-induced circulation cells. Larval presence over near-shore reef habitat declined as the energy of the flow field and corresponding larval dispersal and transport increased. Thus, spawning during high-energy conditions will promote dispersal and transport but reduce successful recruitment on near-shore reefs. This indicates that seeding of the adjacent coast is likely to be sporadic, with existing populations necessarily being somewhat self-recruiting. Results suggest that an ideal management system would ensure that adult populations were maintained at intervals of 10–30 km along the coast to maintain larval supply to areas in between. Dispersal characteristics were specific to the release site, and the simulations suggest that marine reserves can be positioned to accordingly achieve desired functions: for example, optimal choices can be made for seeding areas, recruitment or self-maintaining areas.


1986 ◽  
Vol 1 (20) ◽  
pp. 42 ◽  
Author(s):  
B. Manoha ◽  
J. Bernier ◽  
M. Graff

The construction of marine works necessitates a good knowledge of the extreme events which can affect it, such as the storm waves or the water levels. A statistical method of estimation of these extreme events has been developped at L.N.H. The principle of this method, based on the theory of renewal processes, is presented hereafter, as well as the results that it can provide. Some applications of the method are described in the paper ; in particular the application to a site where the available data are insufficient, and where the method enables to precise the results by using complementary numerous data on a neighbouring site, is presented.


Author(s):  
E.D. Wolf

Most microelectronics devices and circuits operate faster, consume less power, execute more functions and cost less per circuit function when the feature-sizes internal to the devices and circuits are made smaller. This is part of the stimulus for the Very High-Speed Integrated Circuits (VHSIC) program. There is also a need for smaller, more sensitive sensors in a wide range of disciplines that includes electrochemistry, neurophysiology and ultra-high pressure solid state research. There is often fundamental new science (and sometimes new technology) to be revealed (and used) when a basic parameter such as size is extended to new dimensions, as is evident at the two extremes of smallness and largeness, high energy particle physics and cosmology, respectively. However, there is also a very important intermediate domain of size that spans from the diameter of a small cluster of atoms up to near one micrometer which may also have just as profound effects on society as “big” physics.


Author(s):  
S. Likharev ◽  
A. Kramarenko ◽  
V. Vybornov

At present time the interest is growing considerably for theoretical and experimental analysis of back-scattered electrons (BSE) energy spectra. It was discovered that a special angle and energy nitration of BSE flow could be used for increasing a spatial resolution of BSE mode, sample topography investigations and for layer-by layer visualizing of a depth structure. In the last case it was shown theoretically that in order to obtain suitable depth resolution it is necessary to select a part of BSE flow with the directions of velocities close to inverse to the primary beam and energies within a small window in the high-energy part of the whole spectrum.A wide range of such devices has been developed earlier, but all of them have considerable demerit: they can hardly be used with a standard SEM due to the necessity of sufficient SEM modifications like installation of large accessories in or out SEM chamber, mounting of specialized detector systems, input wires for high voltage supply, screening a primary beam from additional electromagnetic field, etc. In this report we present a new scheme of a compact BSE energy analyzer that is free of imperfections mentioned above.


2020 ◽  
Author(s):  
Eleonora Diamanti ◽  
Inda Setyawati ◽  
Spyridon Bousis ◽  
leticia mojas ◽  
lotteke Swier ◽  
...  

Here, we report on the virtual screening, design, synthesis and structure–activity relationships (SARs) of the first class of selective, antibacterial agents against the energy-coupling factor (ECF) transporters. The ECF transporters are a family of transmembrane proteins involved in the uptake of vitamins in a wide range of bacteria. Inhibition of the activity of these proteins could reduce the viability of pathogens that depend on vitamin uptake. Because of their central role in the metabolism of bacteria and their absence in humans, ECF transporters are novel potential antimicrobial targets to tackle infection. The hit compound’s metabolic and plasma stability, the potency (20, MIC Streptococcus pneumoniae = 2 µg/mL), the absence of cytotoxicity and a lack of resistance development under the conditions tested here suggest that this scaffold may represent a promising starting point for the development of novel antimicrobial agents with an unprecedented mechanism of action.<br>


2021 ◽  
Vol 22 (15) ◽  
pp. 7879
Author(s):  
Yingxia Gao ◽  
Yi Zheng ◽  
Léon Sanche

The complex physical and chemical reactions between the large number of low-energy (0–30 eV) electrons (LEEs) released by high energy radiation interacting with genetic material can lead to the formation of various DNA lesions such as crosslinks, single strand breaks, base modifications, and cleavage, as well as double strand breaks and other cluster damages. When crosslinks and cluster damages cannot be repaired by the cell, they can cause genetic loss of information, mutations, apoptosis, and promote genomic instability. Through the efforts of many research groups in the past two decades, the study of the interaction between LEEs and DNA under different experimental conditions has unveiled some of the main mechanisms responsible for these damages. In the present review, we focus on experimental investigations in the condensed phase that range from fundamental DNA constituents to oligonucleotides, synthetic duplex DNA, and bacterial (i.e., plasmid) DNA. These targets were irradiated either with LEEs from a monoenergetic-electron or photoelectron source, as sub-monolayer, monolayer, or multilayer films and within clusters or water solutions. Each type of experiment is briefly described, and the observed DNA damages are reported, along with the proposed mechanisms. Defining the role of LEEs within the sequence of events leading to radiobiological lesions contributes to our understanding of the action of radiation on living organisms, over a wide range of initial radiation energies. Applications of the interaction of LEEs with DNA to radiotherapy are briefly summarized.


Water ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 738
Author(s):  
Nicola Rossi ◽  
Mario Bačić ◽  
Meho Saša Kovačević ◽  
Lovorka Librić

The design code Eurocode 7 relies on semi-probabilistic calculation procedures, through utilization of the soil parameters obtained by in situ and laboratory tests, or by the means of transformation models. To reach a prescribed safety margin, the inherent soil parameter variability is accounted for through the application of partial factors to either soil parameters directly or to the resistance. However, considering several sources of geotechnical uncertainty, including the inherent soil variability, measurement error and transformation uncertainty, full probabilistic analyses should be implemented to directly consider the site-specific variability. This paper presents the procedure of developing fragility curves for levee slope stability and piping as failure mechanisms that lead to larger breaches, where a direct influence of the flood event intensity on the probability of failure is calculated. A range of fragility curve sets is presented, considering the variability of levee material properties and varying durations of the flood event, thus providing crucial insight into the vulnerability of the levee exposed to rising water levels. The procedure is applied to the River Drava levee, a site which has shown a continuous trend of increased water levels in recent years.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Duy Tung Phan ◽  
Chang Won Jung

AbstractAn electromagnetic pulse (EMP) with high energy can damage electronic equipment instantly within a wide range of thousands of kilometers. Generally, a metal plate placed inside a thick concrete wall is used against an EMP, but it is not suitable for an EMP shielding window, which requires not only strong shielding effectiveness (SE) but also optical transparency (OT). In this paper, we propose a very thin and optically transparent structure with excellent SE for EMP shielding window application. The proposed structure consists of a saltwater layer held between two glass substrates and two metal mesh layers on the outside of the glass, with a total thickness of less than 1.5 cm. The SE and OT of the structure are above 80 dB and 45%, respectively, which not only meet the requirement of EMP shielding for military purposes but also retain the procedure of good observation. Moreover, the OT of the structure can be significantly improved using only one metal mesh film (MMF) layer, while the SE is still maintained high to satisfy the required SE for home applicants. With the major advantages of low cost, optical transparency, strong SE, and flexible performance, the proposed structure can be considered a good solution for transparent EMP shielding windows.


Sign in / Sign up

Export Citation Format

Share Document