scholarly journals Numerical Modelling of the Nearfield Longitudinal Wake Profiles of a High-Speed Prismatic Planing Hull

2020 ◽  
Vol 8 (7) ◽  
pp. 516
Author(s):  
Angus Gray-Stephens ◽  
Tahsin Tezdogan ◽  
Sandy Day

This study investigates the level of accuracy with which Computational Fluid Dynamics (CFD) is capable of modelling the nearfield longitudinal wake profiles of a high-speed planing hull. It also looks to establish how various set-ups influence the accuracy, with a specific emphasis on turbulence modelling. It analyses a hull over a broad range of conditions to provide detailed insight into the strengths and limitations of CFD, comparing the numerical results to the experimental results previously generated by the authors. A quantitative comparison is made for the centreline (CL) and quarterbeam (QB) longitudinal wake profile plots. Following this, a qualitative comparison is made between photos of the flow pattern from the experimental testing and free surface elevation plots from CFD. The study concluded that CFD is an accurate and robust method of modelling the nearfield longitudinal wake profiles of a high-speed planning hull.

2012 ◽  
Vol 27 (2) ◽  
pp. 173-183 ◽  
Author(s):  
Lisa Prahl Wittberg ◽  
Magnus Björkman ◽  
Gohar Khokhar ◽  
Ulla-Britt Mohlin ◽  
Anders Dahlkild

Abstract The flow pattern in the grooves plays a major role for the homogeneity of refining as well as for the transfer and loading of fiber flocs in refining position on the bar edges. However, it is an area where very little information is available. In the present study, flow conditions in the grooves in a Low-Consistency (LC) - disc refiner were studied both experimentally and numerically. The experimental study involved high-speed imaging through a 3 cm peephole into a commercial refiner. The Computational Fluid Dynamics (CFD) simulation focused on the flow condition in a radial groove, considering both Newtonian and non-Newtonian flows. Flow conditions for stator and rotor grooves were modeled along the groove at different angular speeds and pressure differences over the refiner. Both the experimental and the modeling results show a dual flow pattern in the grooves; a rotational/spiral movement at the top of the groove and a flow in the direction of the groove at the bottom, which to the authors knowledge has not been reported in literature. The strong vortical motion at the top of the grooves observed both for the rotor and the stator are believed to be important for placing the fibers onto the bar edges and to induce shear forces in such a way that the fibers get treated. Moreover, a large sensitivity to suspension properties in terms of the development of flow pattern was detected.


2012 ◽  
Vol 220-223 ◽  
pp. 1698-1702
Author(s):  
Jian Chen ◽  
Zhu Ming Su ◽  
Qi Zhou ◽  
Jian Ping Shu

A novel hydraulic rotary high speed on/off valve is investigated. The function of the outlet turbine and the effect on revolution speed of valve spool are analyzed. The inner fluid flow condition under full open case of the on/off valve is simulated using computational fluid dynamics(CFD) method based on Ansys/Fluent and velocity and pressure profiles of fluid inside valve are obtained. Suggestions on optimizing the geometry of valve to decrease transition losses are given.


Joint Rail ◽  
2002 ◽  
Author(s):  
Robert A. MacNeill ◽  
Samuel Holmes ◽  
Harvey S. Lee

This paper describes measurement of the aerodynamic pressures produced by a Bombardier High-Speed Non-Electric Locomotive (HSNEL) on an adjacent stationary double-stack freight car. Static pressures are measured on the near and far-side faces of the freight containers over a range of locomotive speeds from 60 to 130 mph. This data is also compared with the pressures predicted by computational fluid dynamics (CFD) simulations.


2010 ◽  
Vol 132 (7) ◽  
Author(s):  
Suhas V. Patankar

This paper deals with the distribution of airflow and the resulting cooling in a data center. First, the cooling challenge is described and the concept of a raised-floor data center is introduced. In this arrangement, cooling air is supplied through perforated tiles. The flow rates of the cooling air must meet the cooling requirements of the computer servers placed next to the tiles. These airflow rates are governed primarily by the pressure distribution under the raised floor. Thus, the key to modifying the flow rates is to influence the flow field in the under-floor plenum. Computational fluid dynamics (CFD) is used to provide insight into various factors affecting the airflow distribution and the corresponding cooling. A number of ways of controlling the airflow distribution are explored. Then attention is turned to the above-floor space, where the focus is on preventing the hot air from entering the inlets of computer serves. Different strategies for doing this are considered. The paper includes a number of comparisons of measurements with the results of CFD simulations.


2016 ◽  
Vol 842 ◽  
pp. 186-190 ◽  
Author(s):  
Anh Tuan Phan

Hovercraft operates on multi-terrains such as on water surface, on roads, on mud, on non-flat surfaces... it is used popular on the world. With the ability of operating on multi-terrains at high speed, hovercraft is used for many purposes, such as on surveying and rescues missions on areas that are not reachable by normal vehicles, on military missions and traveling... Currently, methods for estimating hovercraft resistance are not accurate enough due to many experiential formulae and coefficients involved during calculating process. This paper presents a method for calculating hovercraft resistance using computational fluid dynamics (CFD) tools. This research method is used popular and modern research method on the world. The method was applied for calculating resistance of a 7 meters length hovercraft model. The modelling results give us suggestions in selecting engine power and operating speeds for minimizing fuel consumption.


Author(s):  
Iman A. Alwan ◽  
Riyadh Z. Azzubaidi

Large-scale geometric roughness elements is one of the solutions that is used to protect openchannels from erosion. It is use to change the hydraulic characteristics of the flow. It may be concrete blocksor large stone placed at the bed of the channel to impose more resistance in the bed. The height of theseroughness elements is an important parameter that can affect the hydraulic characteristics of the flow. Usinga series of tests of T-shape roughness elements at three different heights, 3, 4.5, and 6cm, arranged in thefully rough configuration in order to investigate the velocity distributions along the flume. ANSYSParametric Design Language, APDL, and Computational Fluid Dynamics, CFD, were used to simulate theflow in an open channel with roughness elements. This simulation helps to find the best height of roughnesselements that can be used to change the hydraulic characteristics of the flow. The results showed that thevelocity values are decreased near the bed by about 61%, 58%, and 64% in case of 3cm, 4.5cm, and 6cmroughness heights consequently compared with the velocity of the control case. The velocity values areincreased near the free surface by about 32% and 19% in case of roughness elements height 6cm comparedwith 3cm and 4.5cm roughness heights respectively. The case of 6cm roughness height is considered to bethe effective case for decreasing the velocity values near the bed of the flume.


2021 ◽  
Vol XXIV (1) ◽  
pp. 48-53
Author(s):  
MARCU Oana

The present study gives a Computational Fluid Dynamics (CFD) based insight into the three-dimensional incident flow developed around a very large crude carrier ship during static drift motion. The research proposes a set of virtual Planar Motion Mechanism (PMM) tests of “static drift” type conducted for a number of seven drift angles in the range of -9o to +9o . The emergence and development of vortical structures along the 1:58 KRISO Very Large Crude Carrier 2 (KVLCC2) tanker model are examined and explained, the influence of the considered drift angles being highlighted.


Author(s):  
Balasubramanyam Sasanapuri ◽  
Viraj Suresh Shirodkar ◽  
Wesley Wilson ◽  
Samir Kadam ◽  
Shin Hyung Rhee

A Virtual Model Basin (VMB) is developed based on a Computational Fluid Dynamics (CFD) approach to solving the Reynolds Averaged Navier-Stokes (RANS) equations along with the Volume of Fluid (VOF) method for predicting the free surface. The primary objective of this work is to develop methodologies for the VMB and to demonstrate the capabilities for a generic multi-hull ship geometry. The VMB is used to simulate various model basin tests for steady resistance, maneuvering and seakeeping. For a generic catamaran hull configuration, the methodologies are used for solving these problems and the results are discussed in this paper. VMB results are compared with the results of a benchmarked potential flow theory method for calm water resistance.


2021 ◽  
Author(s):  
Yali Zhang ◽  
Haihua Xu ◽  
Harrif Santo ◽  
Kie Hian Chua ◽  
Yun Zhi Law ◽  
...  

Abstract The interaction between two side-by-side floating vessels has been a subject of interest in recent years due floating liquefied natural gas (FLNG) developments. The safety and operability of these facilities are affected by the free-surface elevation in the narrow gap between the two vessels as well as the relative motions between the vessels. It is common practice in the industry to use potential flow models to estimate the free-surface responses in the gap under various wave conditions. However, it is well-known that any potential flow models require calibration of viscous damping, and model tests are carried out to provide a platform to calibrate the potential flow models. To improve beyond the potential flow models, Computational Fluid Dynamics (CFD) models will be required. However, the large computational efforts required render the conventional CFD approaches impractical for simulations of wave-structure interactions over a long duration. In this paper, a developed coupled solver between potential flow and Computational Fluid Dynamics (CFD) model is presented. The potential flow model is based on High-Order Spectral method (HOS), while the CFD model is based on fully nonlinear, viscous and two phase StarCCM+ solver. The coupling is achieved using a forcing zone to blend the outputs from the HOS into the StarCCM+ solver. Thus, the efficient nonlinear long time simulation of arbitrary input wave spectrum by HOS can be transferred to the CFD domain, which can reduce the computational domain and simulation time. In this paper, we make reference to the model experiments conducted by Chua et al. (2018), which consist of two identical side-by-side barges of 280 m (length) × 46 m (breadth) × 16.5 m (draught) tested in regular and irregular wave conditions. Our intention is to numerically reproduce the irregular wave conditions and the resulting barge-barge interactions. We first simulate the actual irregular wave conditions based on wave elevations measured by the wave probes using the HOS solver. The outputs are subsequently transferred to the CFD solver through a forcing zone in a 2D computational domain for comparison of the irregular wave conditions without the barges present. Subsequently, a 3D computational domain is set up in the CFD with fixed side-by-side barges modelled, and the interaction under irregular waves is simulated and compared with the experiments. We will demonstrate the applicability of the HOS-StarCCM+ coupling tool in terms of accuracy, efficiency as well as verification and validation of the results.


Sign in / Sign up

Export Citation Format

Share Document