scholarly journals Exposure to Electromagnetic Fields (EMF) from Submarine Power Cables Can Trigger Strength-Dependent Behavioural and Physiological Responses in Edible Crab, Cancer pagurus (L.)

2021 ◽  
Vol 9 (7) ◽  
pp. 776
Author(s):  
Kevin Scott ◽  
Petra Harsanyi ◽  
Blair A. A. Easton ◽  
Althea J. R. Piper ◽  
Corentine M. V. Rochas ◽  
...  

The current study investigated the effects of different strength Electromagnetic Field (EMF) exposure (250 µT, 500 µT, 1000 µT) on the commercially important decapod, edible crab (Cancer pagurus, Linnaeus, 1758). Stress related parameters were measured (l-Lactate, d-Glucose, Total Haemocyte Count (THC)) in addition to behavioural and response parameters (shelter preference and time spent resting/roaming) over 24 h periods. EMF strengths of 250 µT were found to have limited physiological and behavioural impacts. Exposure to 500 µT and 1000 µT were found to disrupt the l-Lactate and d-Glucose circadian rhythm and alter THC. Crabs showed a clear attraction to EMF exposed (500 µT and 1000 µT) shelters with a significant reduction in time spent roaming. Consequently, EMF emitted from MREDs will likely affect crabs in a strength-dependent manner thus highlighting the need for reliable in-situ measurements. This information is essential for policy making, environmental assessments, and in understanding the impacts of increased anthropogenic EMF on marine organisms.


Author(s):  
E.D. Boyes ◽  
P.L. Gai ◽  
D.B. Darby ◽  
C. Warwick

The extended crystallographic defects introduced into some oxide catalysts under operating conditions may be a consequence and accommodation of the changes produced by the catalytic activity, rather than always being the origin of the reactivity. Operation without such defects has been established for the commercially important tellurium molybdate system. in addition it is clear that the point defect density and the electronic structure can both have a significant influence on the chemical properties and hence on the effectiveness (activity and selectivity) of the material as a catalyst. SEM/probe techniques more commonly applied to semiconductor materials, have been investigated to supplement the information obtained from in-situ environmental cell HVEM, ultra-high resolution structure imaging and more conventional AEM and EPMA chemical microanalysis.



1988 ◽  
Vol 253 (1) ◽  
pp. 267-269 ◽  
Author(s):  
Robert C. De Lisle ◽  
Robin Steinberg ◽  
John A. Williams


2020 ◽  
Author(s):  
Sean L. Nguyen ◽  
Soo Hyun Ahn ◽  
Jacob W. Greenberg ◽  
Benjamin W. Collaer ◽  
Dalen W. Agnew ◽  
...  

ABSTRACTMembrane-bound extracellular vesicles (EVs) mediate intercellular communication in all organisms, and those produced by placental mammals have become increasingly recognized as significant mediators of fetal-maternal communication. Here, we aimed to identify maternal cells targeted by placental EVs and elucidate the mechanisms by which they traffic to these cells. Exogenously administered pregnancy-associated EVs traffic specifically to the lung; further, placental EVs associate with lung interstitial macrophages and liver Kupffer cells in an integrin-dependent manner. Localization of EV to maternal lungs was confirmed in unmanipulated pregnancy using a transgenic reporter mouse model, which also provided in situ and in vitro evidence that fetally-derived EVs, rarely, may cause genetic alteration of maternal cells. These results provide for the first time direct in vivo evidence for targeting of placental EVs to maternal immune cells, and further, evidence that EVs can alter cellular phenotype.



2012 ◽  
Vol 32 (suppl_1) ◽  
Author(s):  
Heather M Perry ◽  
Amanda Doran ◽  
Stephanie N Oldham ◽  
Ayelet Gonen ◽  
Xuchu Que ◽  
...  

Background: The HLH transcription factor, Id3, is essential for B cell-mediated atheroprotection in mice and a functionally significant single nucleotide polymorphism in the human ID3 gene at rs11574 is associated with carotid intimal medial thickness in humans. Yet, the mechanisms mediating Id3 atheroprotection are poorly understood. Recent studies provide clear evidence that B cell effects on atherosclerosis are subset dependent; with B2 cells promoting and B-1a cells attenuating atherosclerosis in a sIgM-dependent manner. Innate, natural IgM antibodies, such as E06, recognize oxidized phospholipids, are produced by B-1a cells, and inhibit atherogenesis. Therefore, we hypothesized that Id3 would regulate plasma levels of E06 IgM and atheroprotective B-1a cells. Methods & Results: Id3 -/- ApoE -/- mice (n = 9) at 8 weeks old had lower plasma levels of E06 compared to control Id3 +/+ ApoE -/- mice (n = 9) (1500 vs. 2750 RLU, p < 0.05) as measured by ELISA. This was not due to lower total IgM (270 vs. 100 ug/mL respectively, p < 0.05). ApoB-100 levels were not different (1500 vs 1600 RLU, n.s.). Consistent with plasma data, the number of B-1a cells, assessed by flow cytometry, was lower in Id3 -/- ApoE -/- (n = 5) compared to Id3 +/+ ApoE -/- mice (n = 4) (0.8 x10 5 vs 3.0 x10 5 , p < 0.05). There was no difference in transcript levels, as measured by real-time PCR, of E06 or sIgM in fluorescence-activated cell sorted B-1a cells. Furthermore, we found decreased homeostatic proliferation, measured by in situ CFSE dilution, of B-1a cells in Id3 -/- ApoE -/- mice (n = 5) compared to control mice (n = 5) (30.1% vs. 50.0%, p = 0.001). Additionally, humans with the functionally significant polymorphism in ID3 had lower plasma levels of IgM to MDA-LDL (n = 97, trend with p = 0.08) and no difference in IgG as measured by ELISA. Conclusion: Taken together, these data suggest a novel role for Id3 in regulating B-1a cell proliferation, resulting in reduced plasma levels of the atheroprotective natural antibody, E06. Moreover, the data suggest that the ID3 polymorphism in humans at rs11574 may link protective IgM to modified lipids with vascular disease.



1990 ◽  
Vol 259 (6) ◽  
pp. C889-C896 ◽  
Author(s):  
R. M. McAllister ◽  
R. L. Terjung

Electron transport capacity of skeletal muscle was inhibited in situ in an acute dose-dependent manner with myxothiazol, a tight-binding inhibitor of ubiquinone-cytochrome c reductase, complex III of the respiratory chain. Peak oxygen consumption of rat hindlimb muscle was determined via consecutive 10-min isometric contraction (100 ms at 100 Hz) periods of increasing energy demands (4, 8, 15, 30, 45, and 60 tetani/min), using an isolated hindlimb preparation perfused with a high oxygen delivery (approximately 6-8 mumol.min-1.g-1). Peak oxygen consumption decreased from 4.61 +/- 0.19 mumol.min-1.g-1 (control) in a dose-dependent manner to 0.73 +/- 0.07 mumol.min-1.g-1 at 0.50 microM myxothiazol in blood. Oxygen extraction decreased from 65 to 12% of delivered oxygen. Furthermore, the reduction in peak respiratory rate became evident at lower energy demands of the contraction sequence. Myxothiazol inhibition of respiration was not dependent on the presence of muscle contractions but was evident when mitochondria were uncoupled with carbonyl cyanide m-chlorophenylhydrazone. A 50% effective dosage (ED50) of 0.21 microM myxothiazol for inhibition of peak oxygen consumption closely resembled the inhibition of NADH-cytochrome c reductase activity (ED50 of 0.27 microM) determined from homogenates of the same muscles. This suggests that the peak oxygen consumption of skeletal muscle is tightly coupled to the capacity for electron transport evaluated by flux through NADH-cytochrome c reductase. If the enzyme activity measured in vitro correctly represents available enzymatic capacity within contracting muscle, approximately 75% of electron transport capacity for handling reducing equivalents generated from NADH is utilized during peak oxygen consumption of rat hindlimb muscle contracting in situ.



Sensors ◽  
2020 ◽  
Vol 20 (18) ◽  
pp. 5275
Author(s):  
Seongsoo Kim ◽  
Sang-Myung Lee ◽  
Je Pil Yoon ◽  
Namhun Lee ◽  
Jinhyo Chung ◽  
...  

Graphene oxide (GO)/peptide complexes as a promising disease biomarker analysis platform have been used to detect proteolytic activity by observing the turn-on signal of the quenched fluorescence upon the release of peptide fragments. However, the purification steps are often cumbersome during surface modification of nano-/micro-sized GO. In addition, it is still challenging to incorporate the specific peptides into GO with proper orientation using conventional immobilization methods based on pre-synthesized peptides. Here, we demonstrate a robust magnetic GO (MGO) fluorescence resonance energy transfer (FRET) platform based on in situ sequence-specific peptide synthesis of MGO. The magnetization of GO was achieved by co-precipitation of an iron precursor solution. Magnetic purification/isolation enabled efficient incorporation of amino-polyethylene glycol spacers and subsequent solid-phase peptide synthesis of MGO to ensure the oriented immobilization of the peptide, which was evaluated by mass spectrometry after photocleavage. The FRET peptide MGO responded to proteases such as trypsin, thrombin, and β-secretase in a concentration-dependent manner. Particularly, β-secretase, as an important Alzheimer’s disease marker, was assayed down to 0.125 ng/mL. Overall, the MGO platform is applicable to the detection of other proteases by using various peptide substrates, with a potential to be used in an automated synthesis system operating in a high throughput configuration.



2019 ◽  
Vol 20 (8) ◽  
pp. 1856 ◽  
Author(s):  
Shengming Sun ◽  
Ying Wu ◽  
Hongtuo Fu ◽  
Xianping Ge ◽  
Hongzheng You ◽  
...  

Autophagy is a cytoprotective mechanism triggered in response to adverse environmental conditions. Herein, we investigated the autophagy process in the oriental river prawn (Macrobrachium nipponense) following hypoxia. Full-length cDNAs encoding autophagy-related genes (ATGs) ATG3, ATG4B, ATG5, and ATG9A were cloned, and transcription following hypoxia was explored in different tissues and developmental stages. The ATG3, ATG4B, ATG5, and ATG9A cDNAs include open reading frames encoding proteins of 319, 264, 268, and 828 amino acids, respectively. The four M. nipponense proteins clustered separately from vertebrate homologs in phylogenetic analysis. All four mRNAs were expressed in various tissues, with highest levels in brain and hepatopancreas. Hypoxia up-regulated all four mRNAs in a time-dependent manner. Thus, these genes may contribute to autophagy-based responses against hypoxia in M. nipponense. Biochemical analysis revealed that hypoxia stimulated anaerobic metabolism in the brain tissue. Furthermore, in situ hybridization experiments revealed that ATG4B was mainly expressed in the secretory and astrocyte cells of the brain. Silencing of ATG4B down-regulated ATG8 and decreased cell viability in juvenile prawn brains following hypoxia. Thus, autophagy is an adaptive response protecting against hypoxia in M. nipponense and possibly other crustaceans. Recombinant MnATG4B could interact with recombinant MnATG8, but the GST protein could not bind to MnATG8. These findings provide us with a better understanding of the fundamental mechanisms of autophagy in prawns.



Sign in / Sign up

Export Citation Format

Share Document