scholarly journals Increasing Mechanical Properties of 3D Printed Samples by Direct Metal Laser Sintering Using Heat Treatment Process

2021 ◽  
Vol 9 (8) ◽  
pp. 821
Author(s):  
Jozef Živčák ◽  
Ema Nováková-Marcinčínová ◽  
Ľudmila Nováková-Marcinčínová ◽  
Tomáš Balint ◽  
Michal Puškár

The paper deals with the evaluation of mechanical properties of 3D-printed samples based on high-strength steel powder system maraging steel using direct metal laser sintering (DMLS), which is currently being put into technical practice. The novelty of this article is that it analyzes mechanical properties of samples both printed and age hardened as well as examining the fracture surfaces. When comparing the manufacturer’s range with our recorded values, samples from Set 1 demonstrated strength ranging from 1110 to ultimate 1140 MPa. Samples from Set 2 showed tensile strength values that were just below average. Our recorded range was from 1920 to ultimate 2000 MPa while the manufacturer reported a range from 1950 to 2150 MPa. The tensile strength was in the range from 841 to ultimate 852 MPa in Set 1, and from 1110 to ultimate 1130 MPa in Set 2.

2019 ◽  
Vol 264 ◽  
pp. 02001 ◽  
Author(s):  
Eduardo de Avila ◽  
Jaeseok Eo ◽  
Jihye Kim ◽  
Namsoo P. Kim

PMMA, PC, and PEEK are thermoplastic polymers that possess favorable properties for biomedical applications. These polymers have been used in fields of maxillo-facial, orthopedic, intraocular surgery, and bio-implant, due to their excellent mechanical properties, osteoinductive potential, and antimicrobial capabilities. In this study, the effect of heat treatment on the mechanical properties of 3D printed polymers was characterized. By modifying printing temperature and post heat treatment process, the mechanical properties were specifically tailored for different applications, correlating with the properties of the implants that are commonly made using molding processes.


Author(s):  
J. Arun Prakash ◽  
P. Shanmughasundaram ◽  
M. Vemburaj ◽  
P. Gowtham

This work deals with the examination of the mechanical properties of Aluminium (LM6) reinforced with iron oxide (Fe2O3). Stir casting process is used to formulate the composite sampling by varying iron oxide in 5% and 10% by weight. Three different heat treatment process of hardening, annealing and normalizing is carried out on samples of aluminium (LM6), aluminium (LM6) + 5% Fe2O3 and aluminium (LM6) + 10% Fe2O3. Composite specimens are tested to analyze the mechanical properties such as hardness, yield stress, tensile strength and elongation. Present reinforcement specks enabled the alloy to preserve higher hardness during the heat treatment. Results have shown substantial improvements in properties of the specimens with various compositions of reinforcement.


2014 ◽  
Vol 903 ◽  
pp. 114-117 ◽  
Author(s):  
Izhar Abd Aziz ◽  
Brian Gabbitas ◽  
Mark Stanford

The purpose of this work is to investigate the microstructure and tensile strength of Ti6Al4V pre-alloyed powders produced by a direct metal laser sintering technique. Traditionally, Ti6Al4V products for biomedical applications were produced through hot working or machining of wrought semi-finished products. A change in the production route for manufacturing Ti6Al4V products, from the more traditional methods to an additive manufacturing route, requires an investigation of microstructure and mechanical properties because these are strongly influenced by the production route. The microstructure obtained through rapid solidification during laser sintering shows a very fine α+β lamellar morphology. There is also evidence of martensite which was expected due to high solidification rate of the liquid pool from a temperature above the β-transus during the laser sintering process. Structurally, good mechanical properties which are comparable to the bulk material were obtained.


2015 ◽  
Vol 727-728 ◽  
pp. 322-326 ◽  
Author(s):  
Shi Lu Zhao ◽  
Zhen Zhang ◽  
Lian Chong Qu ◽  
Jun Zhang ◽  
Jian Ming Wang ◽  
...  

Effects of heat treatment process of quenching and tempering under different temperature conditions on mechanical properties of X70 grade pipeline steel bends were studied. Brinell hardness, yield strength, tensile strength, elongation and impact absorbing energy of the bends were tested by using hardness tester, cupping machine and impact testing machine, respectively. It shows that the best heat treatment process of the X70 grade pipeline steel bends is quenching at 890 °Cand thermal insulation for 26 min then water cooling followed by tempering at 590 °C and thermal insulation for 60 min then air cooling. Furthermore, the resulting hardness, yield strength, tensile strength, yield ratio, elongation and impact absorbing energy reach HB230, 595 MPa, 725 MPa, 0.82, 28% and 300 J respectively, which has excellent comprehensive mechanical properties.


2010 ◽  
Vol 97-101 ◽  
pp. 752-755 ◽  
Author(s):  
Jia Qi Zhang ◽  
Yi Long Liang ◽  
Song Xiang ◽  
Xiao Di Yang ◽  
Ming Yang

The effect of the heat treatment process parameters on the mechanical properties and microstructure of SWRS82B wire rods were investigated. Specimens were austenitized at 850°C~900°C and held at 500°C~600°C. The results show that the interlamellar spacing and the pearlite block size become finer with the decrease of the isothermal temperature. At the same isothermal temperature condition, the interlamellar spacing decreases with the increase of austenitizing temperature. The fine interlamellar spacing increases the yield strength and ultimate tensile strength.


INFO-TEKNIK ◽  
2020 ◽  
Vol 20 (2) ◽  
pp. 193
Author(s):  
R. N. Akhsanu Takwim ◽  
Kris Witono ◽  
Pondi Udianto

During the installation process, copper pipes for air conditioning will experience a very large deformation due to straightening and bending following the installation path. Hardening strains occur that result in changes in mechanical properties in this case decreases ductility making it difficult to do the connecting process with flaring. Studies need to be carried out to restore the mechanical properties of copper pipes that have been used, including the heat treatment process on copper pipes, so that used copper pipes have a better benefit value than having to be recycled. The temperature of the heat treatment is varied from 400oC, 500 oC and 600 oC. Tensile test results show that at annealed temperature of 400 oC has the highest tensile strength of 125.81 N / mm2 and proportional limit stress of 40.52 N / mm2. Whereas in the microhardness test, the highest hardness occurs also at annealed temperature of 400 oC which is equal to 50.8 HV.


2012 ◽  
Vol 11 (2) ◽  
Author(s):  
Koos Sarjono

Steel represents a metallic material which is still dominantly used in the engineering industry and mechanical construction. In order to fulfil the industrial demand, the high quality and mechanical properties of steel has to be always available.It is necessary to conduct a heat-treatment process to identify the improvement of mechanical properties and microstructure of steel JIS G 4051 grade S 45 C .Results of the heat-treatment process indicate that the maximum tensile strength of the investigated steel is 1074 MPa , it is earning from the warm-up temperature 860 °C and the highest hardness of the investigated steel is 579 HV it is earning from the warm-up temperature 920 °C . These results meet to AISI – SAE 1045 or JIS G 4051 grade S 45 C standard.


2005 ◽  
Vol 475-479 ◽  
pp. 2785-2788 ◽  
Author(s):  
Bai Qing Xiong ◽  
Yong'an Zhang ◽  
Bao Hong Zhu ◽  
Hong Wei Liu ◽  
Zhi Hui Zhang ◽  
...  

An ultra-high strength Al-11Zn-2.9Mg-1.7Cu alloy has been prepared by spray forming process. The microstructures of as-cast and as-deposited alloys have been studied. XRD analysis result shows that the phases of spray formed Al-11Zn-2.9Mg-1.7Cu alloy consist of a-Al, MgZn2, Al2Cu and Al2CuMg. T6 heat treatment process is used to strengthen the alloy. The ultimate tensile strength reach up to 810MPa, and the elongation is about 9~11%. This kind of aluminum alloy is an ideal structural material for the aerospace and automobile industries.


Author(s):  
Zhentao Yuan ◽  
Jingchang Chen ◽  
Yan Wei ◽  
Changyi Hu ◽  
Yuan Luo ◽  
...  

Abstract A novel Ta/Re layered composite with high temperature resistance, low cost, light weight, and excellent mechanical properties has been prepared by chemical vapor deposition, for improving the comprehensive service performance of the aerospace engine nozzle materials. The interface structure, element distribution, and mechanical properties of the Ta/Re layered composites have been studied with scanning electron microscopy, energy dispersive spectroscopy, X-ray diffraction, and tensile testing machine. The results show that the structure of the Ta/Re layered composites is flat and smooth, uniform, and dense. Further, the interface joint is a serrated meshing structure, which tremendously improves the interface bonding properties. The high temperature (1600 °C) tensile strength of the heat-treated Ta/Vol. 30% Re layered composite is 125 MPa, which is 2.8 times and 56.3% higher than the commonly used nozzle materials C103 and Nb521, respectively, whereas the raw material cost is only about 46% of that of pure rhenium. The heat treatment process enhances the mutual diffusion behavior of the atoms in the interface diffusion layer, and increases the thickness of the diffusion layer, besides changing the mechanical properties of the material. When the heat treatment process is at 1800 °C × 1 h, the highest tensile strength at room temperature is 739.61 MPa, which is 42.76% higher than that in a deposited state. This work can provide a reference for the further research of the Ta/Re layered composites.


Sign in / Sign up

Export Citation Format

Share Document