scholarly journals The Arid Coastal Wetlands of Northern Chile: Towards an Integrated Management of Highly Threatened Systems

2021 ◽  
Vol 9 (9) ◽  
pp. 948
Author(s):  
Nuria Navarro ◽  
Manuel Abad ◽  
Estefanía Bonnail ◽  
Tatiana Izquierdo

The ecological value of coastal wetlands is globally recognized, particularly as biodiversity hotspots, but also as buffer areas because of their role in the fight against climate change in recent years. Most of Chile’s coastal wetlands are concentrated in the central and southern part of the country due to climate conditions. However, northern coastal wetlands go unnoticed despite being located in areas of high water deficit (desert areas) and their role in bird migratory routes along the north–south coastal cordon of South America. This study reviews the current environmental status of the arid coastal wetlands of northern Chile (Lluta, Camarones, Loa, La Chimba, Copiapó, Totoral, Carrizal Bajo) in terms of regulations, management, and future aims. The main natural and anthropogenic threats to these coastal wetlands are identified, as well as the main management tools applied for their protection, e.g., the Nature Sanctuary designation, which allows for the protection of both privately and publicly owned property; and the Urban Wetland, a recently created protection category.

2019 ◽  
Vol 53 (4) ◽  
pp. 297-312
Author(s):  
Yu. O. Andryushchenko ◽  
V. S. Gavrilenko ◽  
V. A. Kostiushyn ◽  
V. N. Kucherenko ◽  
A. S. Mezinov ◽  
...  

Abstract In the article is analyzed own field data of the authors and scientific publications on the wintering of Anserinae in the Azov-Black Sea region of Ukraine in 1900–2017, but the main data was obtained in frame of international mid-winter counts (IWC) in 2005–2017. It was found that 9 species of Anserinae occur in this region during the different seasons of the year: Anser anser — nesting, wintering and migrating; Rufibrenta ruficollis, A. albifrons, A. erythropus, A. fabalis — migrating and wintering; Branta canadensis, Branta leucopsis, Branta bernicla, Chen caerulescens — vagrant or birds which flew away from captivity (zoo etc.). Eulabeia indica — is possible vagrant species. The most numerous wintering species is A. albifrons, common — Rufibrenta ruficollis, not numerous — Anser anser, the other species are not met annually and registered in a very small number. There was almost tenfold drop in number of wintering geese in the Azov-Black Sea region of Ukraine during the period of counts. The main reasons of such reducing of geese amount are the followwing: weather and climate conditions, changes in the forage acessibility, hunting and poaching pressure, poisoning as a result of deratization of agricultural lands, and from 2014 — the militarization of the Syvash area and stop of water supplying of Crimea through the North Crimean channell. It is likely that the factors mentioned above led to relocating of wintering areas of Anserinae, and resulted in decreasing of their amount in this region.


2020 ◽  
Vol 12 (1) ◽  
pp. 1497-1511
Author(s):  
Alexey Naumov ◽  
Varvara Akimova ◽  
Daria Sidorova ◽  
Mikhail Topnikov

AbstractDespite harsh climate, agriculture on the northern margins of Russia still remains the backbone of food security. Historically, in both regions studied in this article – the Republic of Karelia and the Republic of Sakha (Yakutia) – agricultural activities as dairy farming and even cropping were well adapted to local conditions including traditional activities such as horse breeding typical for Yakutia. Using three different sources of information – official statistics, expert interviews, and field observations – allowed us to draw a conclusion that there are both similarities and differences in agricultural development and land use of these two studied regions. The differences arise from agro-climate conditions, settlement history, specialization, and spatial pattern of economy. In both regions, farming is concentrated within the areas with most suitable natural conditions. Yet, even there, agricultural land use is shrinking, especially in Karelia. Both regions are prone to being affected by seasonality, but vary in the degree of its influence. Geographical location plays special role, and weaknesses caused by remoteness to some extent become advantage as in Yakutia. Proximity effect is controversial. In Karelia, impact of neighboring Finland is insignificant compared with the nearby second Russian city – Saint Petersburg.


The Holocene ◽  
2020 ◽  
pp. 095968362098168
Author(s):  
Christian Stolz ◽  
Magdalena Suchora ◽  
Irena A Pidek ◽  
Alexander Fülling

The specific aim of the study was to investigate how four adjacent geomorphological systems – a lake, a dune field, a small alluvial fan and a slope system – responded to the same impacts. Lake Tresssee is a shallow lake in the North of Germany (Schleswig-Holstein). During the Holocene, the lake’s water surface declined drastically, predominately as a consequence of human impact. The adjacent inland dune field shows several traces of former sand drift events. Using 30 new radiocarbon ages and the results of 16 OSL samples, this study aims to create a new timeline tracing the interaction between lake and dunes, as well, as how both the lake and the dunes reacted to environmental changes. The water level of the lake is presumed to have peaked during the period before the Younger Dryas (YD; start at 10.73 ka BC). After the Boreal period (OSL age 8050 ± 690 BC) the level must have undergone fluctuations triggered by climatic events and the first human influences. The last demonstrable high water level was during the Late Bronze Age (1003–844 cal. BC). The first to the 9th century AD saw slightly shrinking water levels, and more significant ones thereafter. In the 19th century, the lake area was artificially reduced to a minimum by the human population. In the dunes, a total of seven different phases of sand drift were demonstrated for the last 13,000 years. It is one of the most precisely dated inland-dune chronologies of Central Europe. The small alluvial fan took shape mainly between the 13th and 17th centuries AD. After 1700 cal. BC (Middle Bronze Age), and again during the sixth and seventh centuries AD, we find enhanced slope activity with the formation of Holocene colluvia.


Forests ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 430 ◽  
Author(s):  
Ronald S. Zalesny ◽  
Andrej Pilipović ◽  
Elizabeth R. Rogers ◽  
Joel G. Burken ◽  
Richard A. Hallett ◽  
...  

Poplar remediation systems are ideal for reducing runoff, cleaning groundwater, and delivering ecosystem services to the North American Great Lakes and globally. We used phyto-recurrent selection (PRS) to establish sixteen phytoremediation buffer systems (phyto buffers) (buffer groups: 2017 × 6; 2018 × 5; 2019 × 5) throughout the Lake Superior and Lake Michigan watersheds comprised of twelve PRS-selected clones each year. We tested for differences in genotypes, environments, and their interactions for health, height, diameter, and volume from ages one to four years. All trees had optimal health. Mean first-, second-, and third-year volume ranged from 71 ± 26 to 132 ± 39 cm3; 1440 ± 575 to 5765 ± 1132 cm3; and 8826 ± 2646 to 10,530 ± 2110 cm3, respectively. Fourth-year mean annual increment of 2017 buffer group trees ranged from 1.1 ± 0.7 to 7.8 ± 0.5 Mg ha−1 yr−1. We identified generalist varieties with superior establishment across a broad range of buffers (‘DM114’, ‘NC14106’, ‘99038022’, ‘99059016’) and specialist clones uniquely adapted to local soil and climate conditions (‘7300502’, ‘DN5’, ‘DN34’, ‘DN177’, ‘NM2’, ‘NM5’, ‘NM6’). Using generalists and specialists enhances the potential for phytoremediation best management practices that are geographically robust, being regionally designed yet globally relevant.


Diversity ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 51
Author(s):  
Bouchra Oujidi ◽  
Mohammed El Bouch ◽  
Mounia Tahri ◽  
Mostafa Layachi ◽  
Soilam Boutoumit ◽  
...  

Marchica Lagoon, a Ramsar site on the Mediterranean coast of Morocco, is experiencing the impacts of watershed pollution, which includes pollutants from the domestic, agricultural, industrial, and mining sectors. Restoration actions were undertaken around this lagoon during the last decade in order to protect its ecological value and to develop tourist activity. To conserve the biodiversity in the lagoon, it is important to assess the environmental state of this ecosystem. This study aims to evaluate the ecotoxicological state of sediments through the post restoration characterization of the trace elements Pb, Cu, Zn, Cr, Co, and Ba, as well as their correlation to the major elements, grain size, and total organic carbon, sampled during two campaigns (the wet and dry seasons of 2018) across a sampling network of thirteen stations. Multivariate analysis and ecotoxicological risk assessment of the trace elements using the sediment quality guidelines and five pollution indices (geoaccumulation index (Igeo), enrichment factor (EF), contamination factor (CF), pollution-load index (PLI), and mean effect range median quotient (m-ERM-Q)) revealed contamination of the lagoon by Pb, Zn, and Cu, and minimal pollution by Cr, Co, and Ba. The distribution of the biological-risk index reveals that four zones of the lagoon may present a high probability of toxicity, thus constituting potential risk areas for aquatic organisms: during the wet season, the area in the northwestern sandbar border, the southwest eutrophication zone, and the mouth of the stream valley conveying industrial discharges; and during dry season, the northwestern eutrophication zone. Despite the restoration actions achieved around the lagoon, the lead, zinc, and copper concentrations increased, and their variation was significant between group stations. The biodiversity conservation of Marchica Lagoon requires continuous monitoring and assessment, as well as the implementation of an integrated management plan with restoration actions, not only around the lagoon, but also at its watershed level.


2021 ◽  
Author(s):  
Catherine Drinkorn ◽  
Jan Saynisch-Wagner ◽  
Gabriele Uenzelmann-Neben ◽  
Maik Thomas

<p>Ocean sediment drifts contain important information about past bottom currents but a direct link from the study of sedimentary archives to ocean dynamics is not always possible. To close this gap for the North Atlantic, we set up a  new coupled Ice-Ocean-Sediment Model of the entire Pan-Arctic region. In order to evaluate the potential dynamics of the model, we conducted decadal sensitivity experiments. In our model contouritic sedimentation shows a significant sensitivity towards climate variability for most of the contourite drift locations in the model domain. We observe a general decrease of sedimentation rates during warm conditions with decreasing atmospheric and oceanic gradients and an extensive increase of sedimentation rates during cold conditions with respective increased gradients. We can relate these results to changes in the dominant bottom circulation supplying deep water masses to the contourite sites under different climate conditions. A better understanding of northern deep water pathways in the Atlantic Meridional Overturning Circulation (AMOC) is crucial for evaluating possible consequences of climate change in the ocean.</p>


Author(s):  
S.V. Emelina ◽  
◽  
V.M. Khan ◽  

The possibility of developing specialized seasonal forecasting within the framework of the North Eurasia Climate Centre is discussed. The purpose of these forecasts is to access the impacts of significant large-scale anomalies of meteorological elements on various economic sectors for the timely informing of government services and private businesses to select optimal strategies for planning preventive measures. A brief overview of the groups of climatic risks in the context of the impacts on the socio-economic sphere is given according to the Russian and foreign bibliographic sources. Examples of the activities of some Regional Climate Centers that produce forecast information with an assessment of possible impacts of weather and climate conditions at seasonal scales on various human activities are given. Keywords: climate services, regional climate forums, weather and climate risks, North Eurasia Climate Centre


2010 ◽  
Vol 6 (5) ◽  
pp. 1811-1852 ◽  
Author(s):  
A. Bozbiyik ◽  
M. Steinacher ◽  
F. Joos ◽  
T. F. Stocker

Abstract. CO2 and carbon cycle changes in the land, ocean and atmosphere are investigated using the comprehensive carbon cycle-climate model NCAR CSM1.4-carbon. Ensemble simulations are forced with freshwater perturbations applied at the North Atlantic and Southern Ocean deep water formation sites under pre-industrial climate conditions. As a result, the Atlantic Meridional Overturning Circulation reduces in each experiment to varying degrees. The physical climate fields show changes that are well documented in the literature but there is a clear distinction between northern and southern perturbations. Changes in the physical variables affect, in return, the land and ocean biogeochemical cycles and cause a reduction, or an increase, in the atmospheric CO2 by up to 20 ppmv, depending on the location of the perturbation. In the case of a North Atlantic perturbation, the land biosphere reacts with a strong reduction in carbon stocks in some tropical locations and in high northern latitudes. In contrast, land carbon stocks tend to increase in response to a southern perturbation. The ocean is generally a sink of carbon although large re-organizations occur throughout various basins. The response of the land biosphere is strongest in the tropical regions due to a shift of the Intertropical Convergence Zone. The carbon fingerprints of this shift, either to the south or to the north depending on where the freshwater is applied, can be found most clearly in South America. For this reason, a compilation of various paleoclimate proxy records of Younger Dryas precipitation changes are compared with our model results.


2021 ◽  
Vol 24 (3) ◽  
pp. 192
Author(s):  
Casadidio, I.

The diabetic foot can be treated only if you know how to work as a team and the diabetologist, the natural referent of the clinical case, has to create a multiprofessional/multidisciplinary team that can manage the patient to prevent injuries and treat them if they show up. The creation of structured diagnostic-therapeutic paths guarantees a better coordination of the professional figures involved, optimizes the management of the direct and indirect resources required to manage such a clinically challenging complication. After many years of activity we have built a solid integration between diabetologist and orthopedic, between hospital and territory and we have simplified a complex path. The fulcrum of this activity is the joint orthopaedic clinic that guarantees the correct care of the patient and allows the professional growth of the whole team. KEY WORDS diabetic foot; integrated management; PDTA; team.


2021 ◽  
Author(s):  
◽  
Martha Ingrid Trodahl

<p>Lake Wairarapa is a highly modified lacustrine system at the southern end of the North Island, New Zealand. Not only is it situated in a region that is affected by catchment altering natural phenomena such as earthquakes, storms and fire, but both the catchment and hydrology of the lake have also been significantly altered by humans. Polynesian settlers arrived in the area approximately 700BP and proceeded to deforest the lowlands. European settlers began arriving from 1844AD onwards, completing deforestation of the lowlands and Eastern Uplands. In 1964 the Lower Wairarapa Valley Development Scheme was commissioned in an effort to alleviate flooding. This scheme significantly altered the hydrological regime of the lake. Interest in the condition of the lake and associated wetlands, and the realization that it has important recreational, cultural and ecological value, began to develop in the 1990's. This has led to a desire to see the lake restored to a more natural condition while still maintaining its flood protection capabilities. However, the lake has only been monitored over the last several decades. Any evidence of the lakes condition prior to this time is anecdotal and little is known of its natural tendencies and functions. This research has investigated and quantified morphological changes to Lake Wairarapa at the decadal and millenial scale using a combination of aerial photograph analysis, bathymetric survey comparison and lakebed core analysis. Study at these diverse scales has allowed the observed changes to be related to human environmental modification, while also being juxtaposed against natural trajectories of change. It is hoped that this can inform lake management and restoration efforts and provide a benchmark for measuring future changes to the lake, while also addressing wider issues concerning natural versus anthropogenic landscape change at the local and regional scale. The results of this project suggest that the lake has been steadily infilling over the last 6000BP – particularly along the eastern shore. For the two decades after significant hydrological changes to the lake associated with the Lower Wairarapa Valley Development Scheme, the rate of infilling on the eastern shore increased more than tenfold. However, this was accompanied by deepening in other parts of the lake. Today infilling along the eastern shore appears to have returned to natural rates and overall the lake in 2010 is only slightly smaller in volume than in 1975. Longer term anthropogenic influence on the lake and catchment was also evident. In particular Polynesian settlement and subsequent deforestation by fire was apparent in the lakebed cores. This result not only addresses the immediate issue of anthropogenic influence on this particular lacustrine system, but also informs the debate surrounding the dating of Polynesian arrival in New Zealand.</p>


Sign in / Sign up

Export Citation Format

Share Document