scholarly journals A Novel Strength Model for Cement Marine Clay Based on the Mechanical-Chemical Coupling Behavior

2021 ◽  
Vol 9 (12) ◽  
pp. 1454
Author(s):  
Liyang Xu ◽  
Zihai Yan ◽  
Jiajia Yan ◽  
Qiliang Xu ◽  
Jiancai Zhu ◽  
...  

Crucial mechanical-chemical (MC) interactions occur during the cement hydration process in cement marine clay; however, the role of such an important element of the resulting strength has been subject to less investigation, particularly from the theoretical perspective. To overcome this scientific gap, an efficient strength-based model accounting for the coupled MC processes is proposed here. Based on the analysis of the cement hydration mechanism, the porosity was chosen as the main factor to characterize the influence of the MC interactions on the overall response. To verify the accuracy of the MC model, the unconfined compressive strength (UCS) experiment was conducted for the cement marine clay samples, and the corresponding simulation model was constructed using COMSOL multiphysics®. In addition, a comparison between the predicted results by the existing three strength models and the proposed MC model was performed. Subsequently, the sensitivity analysis and identification of mechanical parameters were carefully carried out. The obtained results show that the UCS strength for Taizhou clay ranges from 10.21 kPa to 354.2 kPa as the cement content increases from 10% to 20%, and the curing time varies from 3 days to 28 days. The mechanical parameters in the MC model can be obtained according to the porosity level. A reasonably good agreement between the UCS strength results of simulations and the experimentally observed data is reported. Additionally, the predicted UCS strength results by the MC model demonstrate the best correspondence with the measured values, indicating the high efficacy of the established model.

2015 ◽  
Vol 69 (1) ◽  
pp. 2-9
Author(s):  
Toyoharu NAWA ◽  
Tomotaka AWAMURA ◽  
Junbum PARK ◽  
Yuka MORINAGA

2012 ◽  
Vol 450-451 ◽  
pp. 1528-1531
Author(s):  
Mei Li Zhao

The mineral admixture is one of the indispensable materials for ordinary high-performance concrete. In this paper, the pure cement paste and cement paste replacing by mineral admixture were tested by cement mortar. The SEM analysis of pure cement paste and mineral admixture paste after curing period of 7 days and 28 days.From the picture of SEM after the period of 7 days and 28 days,the cement hydration mechanism was suspected.It could be used for explanating the physical performance and durability performance of the high perfromance concrete with mineral admixture.


2014 ◽  
Vol 900 ◽  
pp. 421-425
Author(s):  
Xiao Lin Qiu ◽  
Yi Ren Zhou ◽  
Lang Wu ◽  
Bin Lei

A microstructure kinetic model is introduced for the hydration of cementitious materials.The hydration degree is mainly controlled by chemical reaction or diffusion rate in hydrate process of cement. According to evolution of characteristic parameters in two main processes, the hydrated kinetic equations is given in the paper. The kinetic equations can simulate the main hydrated processes, and an understanding on the hydration mechanism of cement can be emphasized. Chemical reaction dominates in the early stage of hydration, diffusion rate becomes the dominating factor gradually as the hydration degree increases.


2021 ◽  
Vol 325 ◽  
pp. 125-130
Author(s):  
Milan Meruňka ◽  
Lucia Ťažká ◽  
Rudolf Hela

Cement hydration is a process during which the setting and hardening of cement stone occur. This process is linked to the significant development of heat of hydration, which is accompanied by volume changes of concrete composite (i.e. shrinkage). Due to this, cracks in a concrete composite can arise and influence not only its durability, mechanical parameters or aesthetics but, in the case of water-tight concretes (e.g. the so-called white boxes), also its function. The extent of volume changes can be influenced not only by the composite structure itself or the selection and amount of cement but also by using suitable active additions, e.g. high-temperature fly ash. As a result, it is possible to reduce the amount of cement required while maintaining identical mechanical parameters of concrete and, at the same time, slow down the progress of heat of hydration during cement hydration. One of the other options to eliminate volume changes in concrete composites is the use of shrinkage-reducing additives (SRA). This article focuses on the SRA influence on volume changes of high-performance concretes and their impact on the development of hydration temperatures and mechanical parameters of composites.


2011 ◽  
Vol 413 ◽  
pp. 174-179
Author(s):  
Bao Guo Ma ◽  
Jun Xiao ◽  
Hong Bo Tan

This article reports on the study to evaluate the hydration process of cement by the addition of citric acid. Through the test of citric acid of cement paste, hydration heat performance, resistivity, chemical shrinkage, and combined with XRD, SEM, DSC-TG discusses the influence of citric acid on cement hydration process. The results thus obtained were compared to the hydration process of cement with the blank sample and vary of dosage of citric acid. The results show that: The early hydration about 1~2 h resistivity increases, dissolve balance stage was extended; The chemical shrinkage increased significantly, and increases with dosage; With the increase in citric acid dosage, AFt diffraction peaks increases, while the CH peak decreases, indicating that the citric acid accelerated the initial hydration of C3A, while inhibiting C3S hydration and promoting AFt generation. Key words: citric acid, mechanism ,hydration heat, resistivity


2019 ◽  
Vol 296 ◽  
pp. 35-40
Author(s):  
Lucia Osuská ◽  
Martin Ťažký ◽  
Milan Meruňka ◽  
Rudolf Hela

Cement hydration is a chemical reaction that is associated with the development of hydration heat and changes in the volume of input components that transit from the solid and liquid phase to one homogeneous whole. In order to eliminate the volume changes already occurring during the hydration process, several principles can be applied, such as the use of active or inert admixtures as partial cement substitute or special shrinkage reducing additives. The experiment verifies the effect of anti-shrinkage additives on the course of hydration of cement pastes in terms of the development of hydration temperatures and elimination of volume changes of cement pastes. Volume changes will be monitored for the first 30 hours of cement mixing with water, i.e. in the time when the major changes occur due to this chemical reaction. Due to the expected hydration deceleration of the binder component by the effect of SRA, the impact of the use of these additives on the curing time of the composite and consequently on the mechanical parameters of the concrete will be verified.


Materials ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 5626
Author(s):  
Min Pang ◽  
Zhenping Sun ◽  
Qi Li ◽  
Yanliang Ji

1H spin-lattice relaxometry (T1, longitudinal) of cement pastes with 0 to 0.18 wt % polycarboxylate superplasticizers (PCEs) at intervals of 0.06 wt % from 10 min to 1210 min was investigated. Results showed that the main peak in T1 relaxometry of cement pastes was shorter and lower along with the hydration times. PCEs delayed and lowered this main peak in T1 relaxometry of cement pastes at 10 min, 605 min and 1210 min, which was highly correlated to its dosages. In contrast, PCEs increased the total signal intensity of T1 of cement pastes at these three times, which still correlated to its dosages. Both changes of the main peak in T1 relaxometry and the total signal intensity of T1 revealed interferences on evaporable water during cement hydration by dispersion mechanisms of PCEs. The time-dependent evolution of weighted average T1 of cement pastes with different PCEs between 10 min and 1210 min was found regular to the four-stage hydration mechanism of tricalcium silicate.


2012 ◽  
Vol 578 ◽  
pp. 121-124 ◽  
Author(s):  
Hong Liang Huang ◽  
Hui Fang Zhang ◽  
Fei Zhao ◽  
Xue Fei Li ◽  
Yan Fang Li

On the basis to clarify the Portland cement hydration mechanism, we have a brief analysis of research methods about Portland cement hydration mechanism, mainly including the hydration heat, ultrasonic method, resistivity method, mercury intrusion method, chemical combine method, CH quantitative measurement, X-ray diffraction method, scanning electron microscopy, providing a theoretical basis of Portland cement hydration mechanism and its material applications in engineering for further study and improvement.


Sign in / Sign up

Export Citation Format

Share Document