A Three Dimensional Microstructure Sphere Model of Cement Hydration

2014 ◽  
Vol 900 ◽  
pp. 421-425
Author(s):  
Xiao Lin Qiu ◽  
Yi Ren Zhou ◽  
Lang Wu ◽  
Bin Lei

A microstructure kinetic model is introduced for the hydration of cementitious materials.The hydration degree is mainly controlled by chemical reaction or diffusion rate in hydrate process of cement. According to evolution of characteristic parameters in two main processes, the hydrated kinetic equations is given in the paper. The kinetic equations can simulate the main hydrated processes, and an understanding on the hydration mechanism of cement can be emphasized. Chemical reaction dominates in the early stage of hydration, diffusion rate becomes the dominating factor gradually as the hydration degree increases.

Author(s):  
C. S. Lin ◽  
W. A. Chiou ◽  
M. Meshii

The galvannealed steel sheets have received ever increased attention because of their excellent post-painting corrosion resistance and good weldability. However, its powdering and flaking tendency during press forming processes strongly impairs its performance. In order to optimize the properties of galvanneal coatings, it is critical to control the reaction rate between solid iron and molten zinc.In commercial galvannealing line, aluminum is added to zinc bath to retard the diffusion rate between iron and zinc by the formation of a thin layer of Al intermetallic compound on the surface of steel at initial hot-dip galvanizing. However, the form of this compound and its transformation are still speculated. In this paper, we report the direct observations of this compound and its transformation.The specimens were prepared in a hot-dip simulator in which the steel was galvanized in the zinc bath containing 0.14 wt% of Al at a temperature of 480 °C for 5 seconds and was quenched by liquid nitrogen.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Annarita Perillo ◽  
Valeria Landoni ◽  
Alessia Farneti ◽  
Giuseppe Sanguineti

Abstract Purpose The purpose of this study is to evaluate inter- and intra-fraction organ motion as well as to quantify clinical target volume (CTV) to planning target volume (PTV) margins to be adopted in the stereotactic treatment of early stage glottic cancer. Methods and materials Stereotactic body radiotherapy (SBRT) to 36 Gy in 3 fractions was administered to 23 patients with early glottic cancer T1N0M0. Patients were irradiated with a volumetric intensity modulated arc technique delivered with 6 MV FFF energy. Each patient underwent a pre-treatment cone beam computed tomography (CBCT) to correct the setup based on the thyroid cartilage position. Imaging was repeated if displacement exceeded 2 mm in any direction. CBCT imaging was also performed after each treatment arc as well as at the end of the delivery. Swallowing was allowed only during the beam-off time between arcs. CBCT images were reviewed to evaluate inter- and intra-fraction organ motion. The relationships between selected treatment characteristics, both beam-on and delivery times as well as organ motion were investigated. Results For the population systematic (Ʃ) and random (σ) inter-fraction errors were 0.9, 1.3 and 0.6 mm and 1.1, 1.3 and 0.7 mm in the left-right (X), cranio-caudal (Y) and antero-posterior (Z) directions, respectively. From the analysis of CBCT images acquired after treatment, systematic (Ʃ) and random (σ) intra-fraction errors resulted 0.7, 1.6 and 0.7 mm and 1.0, 1.5 and 0.6 mm in the X, Y and Z directions, respectively. Margins calculated from the intra-fraction errors were 2.4, 5.1 and 2.2 mm in the X, Y and Z directions respectively. A statistically significant difference was found for the displacement in the Z direction between patients irradiated with > 2 arcs versus ≤ 2 arcs, (MW test, p = 0.038). When analyzing mean data from CBCT images for the whole treatment, a significant correlation was found between the time of delivery and the three dimensional displacement vector (r = 0.489, p = 0.055), the displacement in the Y direction (r = 0.553, p = 0.026) and the subsequent margins to be adopted (r = 0.626, p = 0.009). Finally, displacements and the subsequent margins to be adopted in Y direction were significantly greater for treatments with more than 2 arcs (MW test p = 0.037 and p = 0.019, respectively). Conclusions In the setting of controlled swallowing during treatment delivery, intra-fraction motion still needs to be taken into account when planning with estimated CTV to PTV margins of 3, 5 and 3 mm in the X, Y and Z directions, respectively. Selected treatments may require additional margins.


2021 ◽  
Vol 11 (14) ◽  
pp. 6638
Author(s):  
Wenhao Zhao ◽  
Xuping Ji ◽  
Yaqing Jiang ◽  
Tinghong Pan

This work aims to study the effect of a nucleating agent on cement hydration. Firstly, the C-S-H crystal nucleation early strength agent (CNA) is prepared. Then, the effects of CNA on cement hydration mechanism, early strength enhancement effect, C-S-H content, 28-days hydration degree and 28-days fractal dimension of hydration products are studied by hydration kinetics calculation, resistivity test, BET specific surface area test and quantitative analysis of backscattered electron (BSE) images, respectively. The results show that CNA significantly improves the hydration degree of cement mixture, which is better than triethanolamine (TEA). CNA shortens the beginning time of the induction period by 49.3 min and the end time of the cement hydration acceleration period by 105.1 min than the blank sample. CNA increases the fractal dimension of hydration products, while TEA decreases the fractal dimension. CNA significantly improves the early strength of cement mortars; the 1-day and 3-days strength of cement mortars with CNA are more than the 3-days and 7-days strength of the blank sample. These results will provide a reference for the practical application of the C-S-H nucleating agent.


2014 ◽  
Vol 875-877 ◽  
pp. 177-182 ◽  
Author(s):  
Xiang Li ◽  
Hua Quan Yang ◽  
Ming Xia Li

The hydration degree of fly ash and the calcium hydroxide (CH) content were measured. Combined with the equilibrium calculation of cement hydration, a new method for assessment of the hydration degree of cement in the fly ash-cement (FC) pastes based on the CH content was developed. The results reveal that as the fly ash content increase, the hydration degree of fly ash and the CH content decrease gradually; at the same time, the hydration degree of cement increase. The hydration degree of cement in the FC pastes containing a high content of fly ash (more than 35%) at 360 days is as high as 80%, even some of which hydrates nearly completely. The effect of water-cement ratio to the hydration degree of cement in the FC pastes is far less distinct than that of the content of fly ash.


Author(s):  
Amirhossein Bakhtiiari ◽  
Rezvan Khorshidi ◽  
Fatemeh Yazdian ◽  
Hamid Rashedi ◽  
Meisam Omidi

In recent decades, three dimensional (3D) bio-printing technology has found widespread use in tissue engineering applications. The aim of this study is to scrutinize different parameters of the bioprinter – with the help of simulation software – to print a hydrogel so much so that avoid high amounts of shear stress which is detrimental for cell viability and cell proliferation. Rheology analysis was done on several hydrogels composed of different percentages of components: alginate, collagen, and gelatin. The results have led to the combination of percentages collagen:alginate:gelatin (1:4:8)% as the best condition which makes sol-gel transition at room temperature possible. The results have shown the highest diffusion rate and cell viability for the cross-linked sample with 1.5% CaCl2 for the duration of 1 h. Finally, we have succeeded in printing the hydrogel that is mechanically strong with suitable degradation rate and cell viability.


2002 ◽  
Vol 4 (4) ◽  
pp. 281-295 ◽  
Author(s):  
Jose González-García ◽  
Angel Frías-Ferrer ◽  
Vicente Montiel ◽  
Antonio Aldaz ◽  
Juan A. Conesa

This paper analyses the hydrodynamic behaviour of electrochemical reactors by simulating stimulus–response experiments. The experiments were performed with a simple experimental arrangement to generate data (Residence Time Distribution (RTD) curves) from electrolytic conductivity measurements. The multiparametric model proposed and the Matlab program developed allow the study of electrochemical reactors using three-dimensional electrodes, providing values of characteristic parameters of the materials, such as porosity and compressibility. The study of the reactor also permits modelling of the electrochemical reactions that will be produced inside it.


2018 ◽  
Vol 48 (9) ◽  
pp. 1941-1950 ◽  
Author(s):  
Ekaterina Ezhova ◽  
Claudia Cenedese ◽  
Luca Brandt

AbstractSubglacial discharges have been observed to generate buoyant plumes along the ice face of Greenland tidewater glaciers. These plumes have been traditionally modeled using classical plume theory, and their characteristic parameters (e.g., velocity) are employed in the widely used three-equation melt parameterization. However, the applicability of plume theory for three-dimensional turbulent wall plumes is questionable because of the complex near-wall plume dynamics. In this study, corrections to the classical plume theory are introduced to account for the presence of a wall. In particular, the drag and entrainment coefficients are quantified for a three-dimensional turbulent wall plume using data from direct numerical simulations. The drag coefficient is found to be an order of magnitude larger than that for a boundary layer flow over a flat plate at a similar Reynolds number. This result suggests a significant increase in the melting estimates by the current parameterization. However, the volume flux in a wall plume is found to be one-half that of a conical plume that has 2 times the buoyancy flux. This finding suggests that the total entrainment (per unit area) of ambient water is the same and that the plume scalar characteristics (i.e., temperature and salinity) can be predicted reasonably well using classical plume theory.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Li Wang ◽  
Hongliang Zhang ◽  
Yang Gao

Low temperature negatively affects the engineering performance of cementitious materials and hinders the construction productivity. Previous studies have already demonstrated that TiO2 nanoparticles can accelerate cement hydration and enhance the strength development of cementitious materials at room temperature. However, the performance of cementitious materials containing TiO2 nanoparticles at low temperatures is still unknown. In this study, specimens were prepared through the replacement of cement with 1 wt.%, 2 wt.%, 3 wt.%, 4 wt.%, and 5 wt.% TiO2 nanoparticles and cured under temperatures of 0°C, 5°C, 10°C, and 20°C for specific ages. Physical and mechanical properties of the specimens were evaluated through the setting time test, compressive strength test, flexural strength test, hydration degree test, mercury intrusion porosimetry (MIP), X-ray diffraction (XRD) analysis, thermal gravimetric analysis (TGA), and scanning electron microscopy (SEM) in order to examine the performance of cementitious materials with and without TiO2 nanoparticles at various curing temperatures. It was found that low temperature delayed the process of cement hydration while TiO2 nanoparticles had a positive effect on accelerating the cement hydration and reducing the setting time in terms of the results of the setting time test, hydration degree test, and strength test, and the specimen with the addition of 2 wt.% TiO2 nanoparticles showed the superior performance. Refined pore structure in the MIP tests, more mass loss of CH in TGA, intense peak appearance associated with the hydration products in XRD analysis, and denser microstructure in SEM demonstrated that the specimen with 2 wt.% TiO2 nanoparticles exhibited preferable physical and mechanical properties compared with that without TiO2 nanoparticles under various curing temperatures.


Sign in / Sign up

Export Citation Format

Share Document