scholarly journals Paracoccidioides HSP90 Can Be Found in the Cell Surface and Is a Target for Antibodies with Therapeutic Potential

2020 ◽  
Vol 6 (4) ◽  
pp. 193
Author(s):  
Ágata Moura ◽  
Diane Oliveira ◽  
Verenice Paredes ◽  
Letícia Rocha ◽  
Fabiana Oliveira ◽  
...  

Paracoccidioidomycosis (PCM) is one of the most frequent systemic mycoses in Latin America. It affects mainly male rural workers in impoverished regions, and the therapy can last up to two years or use drugs that are very toxic. Given the need for novel safe and effective approaches to treat PCM, we have been developing monoclonal antibodies (mAbs) that could be used not only to block specific fungal targets, but also modulate the host’s antifungal immunity. In this work we show the generation of and promising results with an mAb against Heat Shock Protein (HSP)90, a molecular chaperone that is an important virulence factor in fungi. Using recombinant Paracoccidioides lutzii (Pb01) and P. brasiliensis (Pb18) HSP90 proteins produced in E. coli, we immunized mice and generated polyclonal antibodies and an IgG1 hybridoma mAb. The proteins were very immunogenic and both the polyclonal serum and mAb were used in immunofluorescence experiments, which showed binding of antibodies to the yeast cell surface. The mAb successfully opsonized P. lutzii and P. brasiliensis cells in co-incubations with J774.16 macrophage-like cells. Our results suggest that this mAb could serve as the basis for new immunotherapy regimens for PCM.

2020 ◽  
Author(s):  
Ágata Nogueira D’Áurea Moura ◽  
Diane Sthefany Lima de Oliveira ◽  
Verenice Paredes ◽  
Letícia Barboza Rocha ◽  
Arturo Casadevall ◽  
...  

AbstractParacoccidioidomycosis (PCM) is one of the most frequent systemic mycoses in Latin America. It affects mainly male rural workers in impoverished regions, and the therapy can last up to two years or use drugs that are very toxic. Given the need for novel safe and effective approaches to treat PCM, we have been developing monoclonal antibodies (mAbs) that could be used not only to block specific fungal targets, but also modulate the host’s antifungal immunity. In this work we show the generation of and promising results with a mAb against HSP90, a molecular chaperone that is an important virulence factor in fungi. Using recombinant Paracoccidioides lutzii (Pb01) and P. brasiliensis (Pb18) HSP90 proteins produced in E. coli, we immunized mice and generated polyclonal antibodies and an IgG1 hybridoma mAb. The proteins were very immunogenic and both the polyclonal serum and mAb were used in immunofluorescence experiments, which showed binding of antibodies to the yeast cell surface. The mAb successfully opsonized P. lutzii and P. brasiliensis cells in co-incubations with J774.16 macrophage-like cells. Our results suggest that this mAb could serve as the basis for new immunotherapy regimens for PCM.Author summaryParacoccidioidomycosis (PCM) is a severe disease caused by fungi, common in Latin America. It is treatable, but some of the drugs that are available are very toxic or not very effective, and the treatment can take as long as two years to clear the infection. To address the need for improved therapeutic alternatives, we have been developing drug candidates based on antibody technologies against Paracoccidioides brasiliensis and P. lutzii, which cause PCM. In this work, we produced monoclonal antibodies (mAbs) that bind to the fungal protein HSP90, which is essential for fungal cells to survive. One mAb, 4D11, recognized the HSP90 target on the surface of fungal cells. These antibody-covered cells were ingested more efficiently by immune cells called macrophages, suggesting they could improve the host resistance to infection by Paracoccidioides. Future improvements on these antibodies could thus lead to more effective and safer PCM treatments.


2021 ◽  
Author(s):  
Renan E A Piraine ◽  
Vitória S Gonçalves ◽  
Alceu GS dos Santos Junior ◽  
Rodrigo C Cunha ◽  
Pedro MM Albuquerque ◽  
...  

Abstract Objectives. Develop a Cell Surface Display system in S. cerevisiae, based on the construction of an expression cassette for pYES2 plasmid. Results. The construction of an expression cassette containing the α-factor signal peptide and the C-terminal portion of the α-agglutinin protein was made and its sequence inserted into a plasmid named pYES2/gDαAgglutinin, allowing cell surface display of bovine herpesvirus type 5 (BoHV-5) glycoprotein D (gD) on S. cerevisiae BY4741 strain. Recombinant protein expression was confirmed by dot blot, and indirect immunofluorescence using monoclonal anti-histidine antibodies and polyclonal antibodies from mice experimentally vaccinated with a recombinant gD. Conclusions. These results demonstrate that the approach and plasmid used represent not only an effective system for immobilizing proteins on the yeast cell surface, as well as a platform for immunobiologicals development.


Author(s):  
Umadevi M ◽  
Rani T ◽  
Balakrishnan T ◽  
Ramanibai R

Nanotechnology has great promise for improving the therapeutic potential of medicinal molecules and related agents. In this study, silver nanoparticles of different sizes were synthesized in an ultrasonic field using the chemical reduction method with sodium borohydride as a reducing agent. The size effect of silver nanoparticles on antimicrobial activity were tested against the microorganisms Staphylococcus aureus (MTCC No. 96), Bacillus subtilis (MTCC No. 441), Streptococcus mutans (MTCC No. 497), Escherichia coli (MTCC No. 739) and Pseudomonas aeruginosa (MTCC No. 1934). The results shows that B. subtilis, and E. coli were more sensitive to silver nanoparticles and its size, indicating the superior antimicrobial efficacy of silver nanoparticles. 


2021 ◽  
Author(s):  
Lilin Feng ◽  
Liang Gao ◽  
Daniel F. Sauer ◽  
Yu Ji ◽  
Haiyang Cui ◽  
...  

A facile and reversible method to immobilize His6-tagged proteins on the E. coli cell surface through the formation of an Fe(iii)-complex.


2020 ◽  
Vol 22 (1) ◽  
pp. 116
Author(s):  
M. Elizabeth Fini ◽  
Shinwu Jeong ◽  
Mark R. Wilson

Evidence is presented herein supporting the potential of the natural homeostatic glycoprotein CLU (clusterin) as a novel therapeutic for the treatment of dry eye. This idea began with the demonstration that matrix metalloproteinase MMP9 is required for damage to the ocular surface in mouse dry eye. Damage was characterized by degradation of OCLN (occludin), a known substrate of MMP9 and a key component of the paracellular barrier. Following up on this finding, a yeast two-hybrid screen was conducted using MMP9 as the bait to identify other proteins involved. CLU emerged as a strong interacting protein that inhibits the enzymatic activity of MMP9. Previously characterized as a molecular chaperone, CLU is expressed prominently by epithelia at fluid-tissue interfaces and secreted into bodily fluids, where it protects cells and tissues against damaging stress. It was demonstrated that CLU also protects the ocular surface in mouse dry eye when applied topically to replace the natural protein depleted from the dysfunctional tears. CLU is similarly depleted from tears in human dry eye. The most novel and interesting finding was that CLU binds selectively to the damaged ocular surface. In this position, CLU protects against epithelial cell death and barrier proteolysis, and dampens the autoimmune response, while the apical epithelial cell layer is renewed. When present at high enough concentration, CLU also blocks staining by vital dyes used clinically to diagnose dry eye. None of the current therapeutics have this combination of properties to “protect, seal, and heal”. Future work will be directed towards human clinical trials to investigate the therapeutic promise of CLU.


Viruses ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1348
Author(s):  
Lívia Slobodníková ◽  
Barbora Markusková ◽  
Michal Kajsík ◽  
Michal Andrezál ◽  
Marek Straka ◽  
...  

Urinary tract infections (UTIs) are among the events that most frequently need medical intervention. Uropathogenic Escherichia coli are frequently their causative agents and the infections are sometimes complicated by the presence of polyresistant nosocomial strains. Phage therapy is a tool that has good prospects for the treatment of these infections. In the present study, we isolated and characterized two bacteriophages with broad host specificity against a panel of local uropathogenic E. coli strains and combined them into a phage cocktail. According to genome sequencing, these phages were closely related and belonged to the Tequatrovirus genus. The newly isolated phages showed very good activity on a panel of local clinical E. coli strains from urinary tract infections. In the form of a two-phage cocktail, they were active on E. coli strains belonging to phylogroups B2 and D, with relatively lower activity in B1 and no response in phylogroup A. Our study is a preliminary step toward the establishment of a national phage bank containing local, well-characterized phages with therapeutic potential for patients in Slovakia.


2001 ◽  
Vol 183 (9) ◽  
pp. 2724-2732 ◽  
Author(s):  
Céline Lévesque ◽  
Christian Vadeboncoeur ◽  
Fatiha Chandad ◽  
Michel Frenette

ABSTRACT Streptococcus salivarius, a gram-positive bacterium found in the human oral cavity, expresses flexible peritrichous fimbriae. In this paper, we report purification and partial characterization of S. salivarius fimbriae. Fimbriae were extracted by shearing the cell surface of hyperfimbriated mutant A37 (a spontaneous mutant of S. salivarius ATCC 25975) with glass beads. Preliminary experiments showed that S. salivariusfimbriae did not dissociate when they were incubated at 100°C in the presence of sodium dodecyl sulfate. This characteristic was used to separate them from other cell surface components by successive gel filtration chromatography procedures. Fimbriae with molecular masses ranging from 20 × 106 to 40 × 106Da were purified. Examination of purified fimbriae by electron microscopy revealed the presence of filamentous structures up to 1 μm long and 3 to 4 nm in diameter. Biochemical studies of purified fimbriae and an amino acid sequence analysis of a fimbrial internal peptide revealed that S. salivarius fimbriae were composed of a glycoprotein assembled into a filamentous structure resistant to dissociation. The internal amino acid sequence was composed of a repeated motif of two amino acids alternating with two modified residues: A/X/T-E-Q-M/φ, where X represents a modified amino acid residue and φ represents a blank cycle. Immunolocalization experiments also revealed that the fimbriae were associated with a wheat germ agglutinin-reactive carbohydrate. Immunolabeling experiments with antifimbria polyclonal antibodies showed that antigenically related fimbria-like structures were expressed in two other human oral streptococcal species, Streptococcus mitis andStreptococcus constellatus.


2008 ◽  
Vol 24 (9) ◽  
pp. 1943-1949 ◽  
Author(s):  
Łukasz Chrzanowski ◽  
Katarzyna Bielicka-Daszkiewicz ◽  
Mikołaj Owsianiak ◽  
Andreas Aurich ◽  
Ewa Kaczorek ◽  
...  

2013 ◽  
Vol 80 (1) ◽  
pp. 43-53 ◽  
Author(s):  
Joseph P. Park ◽  
Min-Jung Choi ◽  
Se Hun Kim ◽  
Seung Hwan Lee ◽  
Haeshin Lee

ABSTRACTMussels attach to virtually all types of inorganic and organic surfaces in aqueous environments, and catecholamines composed of 3,4-dihydroxy-l-phenylalanine (DOPA), lysine, and histidine in mussel adhesive proteins play a key role in the robust adhesion. DOPA is an unusual catecholic amino acid, and its side chain is called catechol. In this study, we displayed the adhesive moiety of DOPA-histidine onEscherichia colisurfaces using outer membrane protein W as an anchoring motif for the first time. Localization of catecholamines on the cell surface was confirmed by Western blot and immunofluorescence microscopy. Furthermore, cell-to-cell cohesion (i.e., cellular aggregation) induced by the displayed catecholamine and synthesis of gold nanoparticles on the cell surface support functional display of adhesive catecholamines. The engineeredE. coliexhibited significant adhesion onto various material surfaces, including silica and glass microparticles, gold, titanium, silicon, poly(ethylene terephthalate), poly(urethane), and poly(dimethylsiloxane). The uniqueness of this approach utilizing the engineered stickyE. coliis that no chemistry for cell attachment are necessary, and the ability of spontaneousE. coliattachment allows one to immobilize the cells on challenging material surfaces such as synthetic polymers. Therefore, we envision that mussel-inspired catecholamine yielded stickyE. colithat can be used as a new type of engineered microbe for various emerging fields, such as whole living cell attachment on versatile material surfaces, cell-to-cell communication systems, and many others.


Sign in / Sign up

Export Citation Format

Share Document