scholarly journals The Destructive Tree Pathogen Phytophthora ramorum Originates from the Laurosilva Forests of East Asia

2021 ◽  
Vol 7 (3) ◽  
pp. 226
Author(s):  
Thomas Jung ◽  
Marília Horta Jung ◽  
Joan F. Webber ◽  
Koji Kageyama ◽  
Ayaka Hieno ◽  
...  

As global plant trade expands, tree disease epidemics caused by pathogen introductions are increasing. Since ca 2000, the introduced oomycete Phytophthora ramorum has caused devastating epidemics in Europe and North America, spreading as four ancient clonal lineages, each of a single mating type, suggesting different geographical origins. We surveyed laurosilva forests for P. ramorum around Fansipan mountain on the Vietnam-China border and on Shikoku and Kyushu islands, southwest Japan. The surveys yielded 71 P. ramorum isolates which we assigned to eight new lineages, IC1 to IC5 from Vietnam and NP1 to NP3 from Japan, based on differences in colony characteristics, gene x environment responses and multigene phylogeny. Molecular phylogenetic trees and networks revealed the eight Asian lineages were dispersed across the topology of the introduced European and North American lineages. The deepest node within P. ramorum, the divergence of lineages NP1 and NP2, was estimated at 0.5 to 1.6 Myr. The Asian lineages were each of a single mating type, and at some locations, lineages of “opposite” mating type were present, suggesting opportunities for inter-lineage recombination. Based on the high level of phenotypic and phylogenetic diversity in the sample populations, the coalescence results and the absence of overt host symptoms, we conclude that P. ramorum comprises many anciently divergent lineages native to the laurosilva forests between eastern Indochina and Japan.

Plants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1434
Author(s):  
Hiran A. Ariyawansa ◽  
Ichen Tsai ◽  
Jian-Yuan Wang ◽  
Patchareeya Withee ◽  
Medsaii Tanjira ◽  
...  

Camellia sinensis is one of the major crops grown in Taiwan and has been widely cultivated around the island. Tea leaves are prone to various fungal infections, and leaf spot is considered one of the major diseases in Taiwan tea fields. As part of a survey on fungal species causing leaf spots on tea leaves in Taiwan, 19 fungal strains morphologically similar to the genus Diaporthe were collected. ITS (internal transcribed spacer), tef1-α (translation elongation factor 1-α), tub2 (beta-tubulin), and cal (calmodulin) gene regions were used to construct phylogenetic trees and determine the evolutionary relationships among the collected strains. In total, six Diaporthe species, including one new species, Diaporthe hsinchuensis, were identified as linked with leaf spot of C. sinensis in Taiwan based on both phenotypic characters and phylogeny. These species were further characterized in terms of their pathogenicity, temperature, and pH requirements under laboratory conditions. Diaporthe tulliensis, D. passiflorae, and D. perseae were isolated from C. sinensis for the first time. Furthermore, pathogenicity tests revealed that, with wound inoculation, only D. hongkongensis was pathogenic on tea leaves. This investigation delivers the first assessment of Diaporthe taxa related to leaf spots on tea in Taiwan.


1975 ◽  
Vol 17 (3) ◽  
pp. 441-449 ◽  
Author(s):  
A. M. DeLange ◽  
A. J. F. Griffiths

In Neurospora crassa, strains of opposite mating type generally do not form stable heterokaryons because the mating type locus acts as a heterokaryon incompatibility locus. However, when one A and one a strain, having complementing auxotrophic mutants, are placed together on minimal medium, growth may occur, although the growth is generally slow. In this study, escape from such slow growth to that at a wild type or near-wild type rate was observed. The escaped cultures are stable heterokaryons, mostly having lost the mating type allele function from one component nucleus, so that the nuclear types are heterokaryon compatible. Either A or a mating type can be lost. This loss of function has been attributed to deletion since only one nuclear type could be recovered in all heterokaryons except one, but deletion spanning adjacent loci has been directly demonstrated in a minority of cases. Alternatively when one component strain is tol and the other tol+ (tol being a recessive mutant suppressing the heterokaryon incompatibility associated with mating type), escape may occur by the deletion or mutation of tol+, also resulting in heterokaryon compatibility. An induction mechanism for escape is speculated upon.


1987 ◽  
Vol 7 (12) ◽  
pp. 4441-4452
Author(s):  
M Marshall ◽  
D Mahoney ◽  
A Rose ◽  
J B Hicks ◽  
J R Broach

The product of the Saccharomyces cerevisiae SIR4 gene, in conjunction with at least three other gene products, prevents expression of mating-type genes resident at loci at either end of chromosome III, but not of the same genes resident at the MAT locus in the middle of the chromosome. To address the mechanism of this novel position effect regulation, we have conducted a structural and genetic analysis of the SIR4 gene. We have determined the nucleotide sequence of the gene and found that it encodes a lysine-rich, serine-rich protein of 152 kilodaltons. Expression of the carboxy half of the protein complements a chromosomal nonsense mutation of sir4 but not a complete deletion of the gene. These results suggest that SIR4 protein activity resides in two portions of the molecule, but that these domains need not be covalently linked to execute their biological function. We also found that high-level expression of the carboxy domain of the protein yields dominant derepression of the silent loci. This anti-Sir activity can be reversed by increased expression of the SIR3 gene, whose product is normally also required for maintaining repression of the silent loci. These results are consistent with the hypothesis that SIR3 and SIR4 proteins physically associate to form a multicomponent complex required for repression of the silent mating-type loci.


2001 ◽  
Vol 126 (3) ◽  
pp. 309-317 ◽  
Author(s):  
O. Gulsen ◽  
M.L. Roose

Inter-simple sequence repeats (ISSR), simple sequence repeats (SSR) and isozymes were used to measure genetic diversity and phylogenetic relationships among 95 Citrus L. accessions including 57 lemons [C. limon (L.) Burm. f.], related taxa, and three proposed ancestral species, C. maxima (Burm.) Merrill (pummelo), C. medica L. (citron), and C. reticulata Blanco (mandarin). The ancestry of lemons and several other suspected hybrids was also studied. Five isozyme and five SSR loci revealed relatively little variation among most lemons, but a high level of variation among the relatively distant Citrus taxa. Eight ISSR primers amplified a total of 103 polymorphic fragments among the 83 accessions. Similarity matrices were calculated and phylogenetic trees derived using unweighted pair-group method, arithmetic average cluster analysis. All lemons, rough lemons, and sweet lemons, as well as some other suspected hybrids, clustered with citrons. Most lemons (68%) had nearly identical marker phenotypes, suggesting they originated from a single clonal parent via a series of mutations. Citrons contributed the largest part of the lemon genome and a major part of the genomes of rough lemons, sweet lemons, and sweet limes. Bands that characterize C. reticulata and C. maxima were detected in lemons, suggesting that these taxa also contributed to the pedigree of lemon.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Concepción Pérez-García ◽  
Ninoska S. Hurtado ◽  
Paloma Morán ◽  
Juan J. Pasantes

The chromosomal changes accompanying bivalve evolution are an area about which few reports have been published. To improve our understanding on chromosome evolution in Veneridae, ribosomal RNA gene clusters were mapped by fluorescentin situhybridization (FISH) to chromosomes of five species of venerid clams (Venerupis corrugata,Ruditapes philippinarum,Ruditapes decussatus,Dosinia exoleta, andVenus verrucosa). The results were anchored to the most comprehensive molecular phylogenetic tree currently available for Veneridae. While a single major rDNA cluster was found in each of the five species, the number of 5S rDNA clusters showed high interspecies variation. Major rDNA was either subterminal to the short arms or intercalary to the long arms of metacentric or submetacentric chromosomes, whereas minor rDNA signals showed higher variability. Major and minor rDNAs map to different chromosome pairs in all species, but inR. decussatusone of the minor rDNA gene clusters and the major rDNA cluster were located in the same position on a single chromosome pair. This interspersion of both sequences was confirmed by fiber FISH. Telomeric signals appeared at both ends of every chromosome in all species. FISH mapping data are discussed in relation to the molecular phylogenetic trees currently available for Veneridae.


Development ◽  
1994 ◽  
Vol 1994 (Supplement) ◽  
pp. 15-25
Author(s):  
Hervé Philippe ◽  
Anne Chenuil ◽  
André Adoutte

Most of the major invertebrate phyla appear in the fossil record during a relatively short time interval, not exceeding 20 million years (Myr), 540-520 Myr ago. This rapid diversification is known as the `Cambrian explosion'. In the present paper, we ask whether molecular phylogenetic reconstruction provides confirmation for such an evolutionary burst. The expectation is that the molecular phylogenetic trees should take the form of a large unresolved multifurcation of the various animal lineages. Complete 18S rRNA sequences of 69 extant representatives of 15 animal phyla were obtained from data banks. After eliminating a major source of artefact leading to lack of resolution in phylogenetic trees (mutational saturation of sequences), we indeed observe that the major lines of triploblast coelomates (arthropods, molluscs, echinoderms, chordates...) are very poorly resolved i.e. the nodes defining the various clades are not supported by high bootstrap values. Using a previously developed procedure consisting of calculating bootstrap proportions of each node of the tree as a function of increasing amount of nucleotides (Lecointre, G., Philippe, H. Le, H. L. V. and Le Guyader, H. (1994) Mol. Phyl. Evol., in press) we obtain a more informative indication of the robustness of each node. In addition, this procedure allows us to estimate the number of additional nucleotides that would be required to resolve confidently the currently uncertain nodes; this number turns out to be extremely high and experimentally unfeasible. We then take this approach one step further: using parameters derived from the above analysis, assuming a molecular clock and using palaeontological dates for calibration, we establish a relationship between the number of sites contained in a given data set and the time interval that this data set can confidently resolve (with 95% bootstrap support). Under these assumptions, the presently available 18S rRNA database cannot confidently resolve cladogenetic events separated by less than about 40 Myr. Thus, at the present time, the potential resolution by the palaeontological approach is higher than that by the molecular one.


2020 ◽  
Vol 36 (10) ◽  
pp. 3263-3265 ◽  
Author(s):  
Lucas Czech ◽  
Pierre Barbera ◽  
Alexandros Stamatakis

Abstract Summary We present genesis, a library for working with phylogenetic data, and gappa, an accompanying command-line tool for conducting typical analyses on such data. The tools target phylogenetic trees and phylogenetic placements, sequences, taxonomies and other relevant data types, offer high-level simplicity as well as low-level customizability, and are computationally efficient, well-tested and field-proven. Availability and implementation Both genesis and gappa are written in modern C++11, and are freely available under GPLv3 at http://github.com/lczech/genesis and http://github.com/lczech/gappa. Supplementary information Supplementary data are available at Bioinformatics online.


Phytotaxa ◽  
2019 ◽  
Vol 393 (1) ◽  
pp. 67 ◽  
Author(s):  
MIKE THIV ◽  
J. ALFREDO REYES-BETANCORT ◽  
ORI FRAGMAN-SAPIR

The distinction of the perennial Aristida coerulescens from the annual A. adscensionis and its taxonomic treatment has been subject of long discussions. We here include accessions from the Mediterranean and Macaronesia for molecular phylogenetic analyses and conducted a morphometric analysis. A lineage of A. adscensionis, A. coerulescens and A. effusa is well supported in phylogenetic trees. Moreover, a group of Mediterranean, Macaronesia and Arabian A. coerulescens and A. adscensionis is revealed where both taxa are intermingled. A morphological analysis of traditionally used spikelet characters did not indicate a clear separation of both taxa. We therefore conclude that A. coerulescens should best be treated as synonym of A. adscensionis. The differential character of annual and perennial life forms seems to be plastic in this taxon indicating rapid shifts between these two strategies. 


2019 ◽  
Vol 63 (9) ◽  
Author(s):  
Satoshi Nakano ◽  
Takao Fujisawa ◽  
Yutaka Ito ◽  
Bin Chang ◽  
Yasufumi Matsumura ◽  
...  

ABSTRACT Since the introduction of pneumococcal conjugate vaccines, the prevalence of non-meropenem-susceptible pneumococci has been increasing in Japan. In an earlier study, we demonstrated that multidrug-resistant serotype 15A-ST63 in Japan has a specific pbp1a sequence (pbp1a-13) that could promote meropenem resistance. To trace the origin of pbp1a, we analyzed isolates of serotype 19A-CC3111, which is the most prevalent non-meropenem-susceptible clone in Japan. We analyzed a total of 119 serotype 19A-CC3111 strains recovered in Japan using whole-genome sequencing. Of the 119 isolates, 53 (44.5%) harbored pbp1a-13, indicating that the clone may be the primary reservoir of the pbp1a type and that the pbp1a region may be horizontally transferred between different serotype strains. The single acquisition of pbp1a-13 seemed to cause only penicillin resistance and not multidrug resistance; a combination of penicillin-binding protein (PBP) recombination in the pbp2b and/or pbp2x region(s) with acquisition of pbp1a-13 caused multidrug resistance. Conserved amino acid motif analysis suggested that the pbp1a 370SXXK, pbp2b 448SXN, and pbp2x 337SXXN motifs were the candidates for amino acid substitutions increasing the MICs of meropenem, cefotaxime, and penicillin. We identified a specific clone that was correlated with multidrug resistance, although no correlation was observed between phylogenetic trees generated using core genomes and those generated with only the cps locus. All tested isolates were highly erythromycin resistant, and most harbored mefE within macrolide efflux genetic assembly (MEGA) elements and ermB within Tn917, which was inserted within Tn916 and exhibited a structure identical to that of Tn2017.


Sign in / Sign up

Export Citation Format

Share Document